Eliminating Cross-Cutting
Concerns with Aspect-Oriented
Programming

Capital District Java Developers Netw
November 15, 2007

Michael P. Redlic
(908) 730-3
michael.p.redlich@

My Background (1)

& Degree
dB.S. in Computer Science
Rutgers University (go Scarlet Knights!)

“Petrochemical Research Organization” in New Jersey
(Senior Research Technician (1988-1998, 2004-present)
Systems Analyst (1998-2002)

Ai-Logix, Inc.
dTechnical Support Engineer (2003-2004)

4 Amateur Computer Group of New Jersey (ACGNJ)
dJava Users Group Leader (2001-present)

dPresident (2007-present)
Secretary (2006)

- November 15, 2007 Capital District Java Developers Network

) [
=[N
nl L LE

My Background (2)

4 Publications (co-authored with Barry Burd)
James: The Java Apache Mail Enterprise Server
L Avoid Excessive Subclassing with the Decorator Design Pattern

L Keeping Your Java Objects Informed with the Observer Design
Pattern

L Manufacturing Java Objects with the Factory Method Design
Pattern

(QResistance is Futile - How to Make Your Java Objects C
with the Adapter Pattern

L Get to Know Your Java Object’s State of Mind
Pattern

L Encapsulating Algorithms with the Tem

Pattern

Capi

e
W L

Objectives

& Cross-Cutting Concerns
4 Introduce Aspect-Oriented Programming (AOP)
4 Example Application

e
W L

Software Concerns

& Primary concerns
dCore application functionality

& Secondary concerns
dSystem-wide objects that can be used in any primary c

What are Cross-Cutting Concerns?

4 Secondary, system-wide concerns that can be found in
multiple primary concerns
Logging
QdAuthentication
QAuthorization
LPersistence

4 Requires certain behavior to occur at one or more points
in the control flow of a program for its implementation to
be correct

- November 15, 2007 Capital District Java Developers Network 5

// cross-cutting concerns?
Is this method a cross-cutting concern?
public void addClaim(Claim claim) {
if (claim == null)
throw new IllegalArgumentException(“null claim”);
this.claims.add(claim) ;

}

Is this method a cross-cutting concern?

protected void notifylisteners() ({
for (Iterator iterator = listeners.iterator();
iterator.hasNext() ;) {
PolicylListener listener = ijiterator.next() ;
listener.policyUpdated (this) ;
}

} This method needs to be invoked at the appropriate
points in the control flow of the application

- November 15, 2007 Capital District Java Developers Network

// cross-cutting concerns?

public void addClaim(Claim claim) {
if (claim == null)
throw new IllegalArgumentException(“null claim”) ;
this.claims.add(claim) ;
notifyListeners() ; < Simply call noTifyLisTener's() here...

}

protected void notifylisteners() ({
for (Iterator iterator = listeners.iterator();
iterator.hasNext() ;) {
PolicylListener listener = ijiterator.next() ;
listener.policyUpdated (this) ;

}

- November 15, 2007 Capital District Java Developers Network

e
W L

So, Are You Ready...

4 ...to review an initial Laboratory application?

) [
=[N
nl L LE

Cross-Cutting Concerns

Employee

v\ °
Logging
2?

??

PrinciplelInvestig

AdministrativeAssistant

- November 15, 2007 Ca

What is Aspect-Oriented Programming? =

|||||

4 A programming paradigm

& Separates cross-cutting concerns from the core
functionality of the application

A Implementations:
dSpring AOP
dAspectJ
dJBoss AOP
AspectWerkz *

What About Object-Oriented Programming?

4 0bject-Oriented Programming is excellent...
Q...for modeling real-world objects
d...for separation of implementation from interface
d...for creating interfaces that allow for loose object coupling

However, secondary concerns must still be referenced in
each of the primary concerns

Ucreating cross-cutting concerns

* Even Design Patterns can suffer from cross-cutting
concerns!

- November 15, 2007 Capital District Java Developers Network 11

e
W L

Core Concepts

& Join Points
4 Pointcuts
& Advice
& Aspect

Join Points (1)

& ldentifiable points within the execution of a program
dCalling methods
Qinitializing objects (constructor calls)
Accessing/updating data members

4 Place into which aspects are woven

4. Join Point Model

(Defines a set of events visible to an aspect during program
execution

JJoin Points
JPointcuts

- November 15, 2007 Capital District Java Developers Network

13

Tz

e

Join Points (2)

h__
=
E..

: Laboratory || : PrintStream inv: Pl tech : RT admin : AA

main()

printin()

y

I
printin(String) :

printin() !

0

getResponsibility()

getResponsibility(

getResponsibility(

Pointcuts

E ._fl B

A Filters to match join points that meet a specification
& Three (3) types:
QKind
Scope
dContext

& Prototype:

[Vvisibility-modifier] pointcut name (ParameterList)
PointcutExpression ;

Pointcuts (2)

e
W L

& Pointcut Expression

Combination of pointcut designators and operators (&&), (| |
and (') as necessary

Pointcut Designators

4 Kind designators

Match certain “kinds” of join point events
dcall (methodSignature)

Jexecution (methodSignature)

4 Context designators
dMatch join points based on join point context
Utarget (Type)
UJargs (Type)
Scope designators
Match join points within a certain scope

- November 15, 2007 Capital District Java Developers Network

17

Advice

e
W L

4 Specifies what to do at the join points of interest
4. Code that is woven into a pointcut

& Three (3) types:
Before
L After
dAround

Before Advice =

& Executes before a matched join point
Prototype:

before (ParameterlList) : pointcutName (ParameterList) ({
// body of advice...

}

After Advice (1) <

& Executes after a matched join point

4 Three (3) basic forms:
dSuccessful return from a matched join point

dReturning from a matched join point upon some exception
condition

dReturning from a matched join point either normally
exception condition

After Advice (2)

A
¥

Prototypes:

after (ParameterlList) returning(returnValue)
pointcutName (ParameterList) ({

// body of advice...
}

after (ParameterList) throwing (ExceptionType) :
pointcutName (ParameterList) {

// body of advice...
}

after (parameterList) : pointcutName (ParameterList) {

// body of advice...
}

Around Advice

4 Executes before and after a matched join point

4 Can determine:
Continuation of program execution into matched join point
Return type

A Prototype:

ReturnType around (ParameterList)
pointcutName (ParameterList) ({

// body of advice
if(// some desired condition)

proceed (ParameterList)

}

- November 15, 2007 Capital District Java Developers Network

22

Aspect =

& A unit of modularity, encapsulation, and abstraction
dSound familiar??

4 Aspect = Pointcut + Advice
4 Prototype:

[Visibility-modifier] aspect {
// pointcut definition(s)...
// advice definitions(s)...

// other methods...
}

e
W L

So, Are You Readly...

& ...to review the refactored Laboratory application?

e
W L

Resources (1)

& Spring Framework
dhttp://www.springframework.org/

4 AspectJ
Odhttp://www.eclipse.org/aspectj/

4 JBoss AOP
dhttp://labs. jboss.com/jbossaop/

& AspectWerkz
dhttp://aspectwerkz.codehaus.or

Resources (2) =

& Capitol District Java Developers Network
dhttp://www.cdjdn.com/

4 ACGNJ Java Users Group
dhttp://www.javasig.org/

Princeton Java Users Group
dhttp://www.myflex.org/princetonjug/

4 NYJavasIG
dhttp://www. javasig.com/

4 Philly Spring Users Group
Jdhttp://phillyspring.oxrg/

Further Reading (1) <

& Professional Java Development with the Spring
Framework

dRod Johnson, et. al
QISBN 0-76457-483-3

4 Pro Spring
dRob Harrop and Jan Machacek
QISBN 1-59059-461-4

4 Spring in Action
Craig Walls and Ryan Breidenbach
QISBN 1-93239-435-4

Further Reading (2)

e
W L

& Eclipse AspectJ
Adrian Colyer, et. al
LISBN 0-321-24587-3

Aspectd in Action
(QRamnivas Laddad
ISBN 1-930-110-93-6

