
Eliminating Cross-Cutting
Concerns with Aspect-Oriented

Programming
Capital District Java Developers Network

November 15, 2007

Michael P. Redlich
(908) 730-3416

michael.p.redlich@exxonmobil.com

1Capital District Java Developers NetworkNovember 15, 2007

My Background (1)

Degree
B.S. in Computer Science
Rutgers University (go Scarlet Knights!)

“Petrochemical Research Organization” in New Jersey
Senior Research Technician (1988-1998, 2004-present)
Systems Analyst (1998-2002)

Ai-Logix, Inc.
Technical Support Engineer (2003-2004)

Amateur Computer Group of New Jersey (ACGNJ)
Java Users Group Leader (2001-present)
President (2007-present)
Secretary (2006)

2Capital District Java Developers NetworkNovember 15, 2007

My Background (2)

Publications (co-authored with Barry Burd)
James: The Java Apache Mail Enterprise Server
Avoid Excessive Subclassing with the Decorator Design Pattern
Keeping Your Java Objects Informed with the Observer Design
Pattern
Manufacturing Java Objects with the Factory Method Design
Pattern
Resistance is Futile – How to Make Your Java Objects Conform
with the Adapter Pattern
Get to Know Your Java Object’s State of Mind with the State
Pattern
Encapsulating Algorithms with the Template Method Design
Pattern

3Capital District Java Developers NetworkNovember 15, 2007

Objectives

Cross-Cutting Concerns
Introduce Aspect-Oriented Programming (AOP)
Example Application

4Capital District Java Developers NetworkNovember 15, 2007

Software Concerns

Primary concerns
Core application functionality

Secondary concerns
System-wide objects that can be used in any primary concern

5Capital District Java Developers NetworkNovember 15, 2007

What are Cross-Cutting Concerns?

Secondary, system-wide concerns that can be found in
multiple primary concerns

Logging
Authentication
Authorization
Persistence

Requires certain behavior to occur at one or more points
in the control flow of a program for its implementation to
be correct

6Capital District Java Developers NetworkNovember 15, 2007

// cross-cutting concerns?

public void addClaim(Claim claim) {
if(claim == null)

throw new IllegalArgumentException(“null claim”);
this.claims.add(claim);
}

protected void notifyListeners() {
for(Iterator iterator = listeners.iterator();

iterator.hasNext();) {
PolicyListener listener = iterator.next();
listener.policyUpdated(this);
}

}

Is this method a cross-cutting concern?

Is this method a cross-cutting concern?

This method needs to be invoked at the appropriate
points in the control flow of the application

7Capital District Java Developers NetworkNovember 15, 2007

// cross-cutting concerns?

public void addClaim(Claim claim) {
if(claim == null)

throw new IllegalArgumentException(“null claim”);
this.claims.add(claim);
notifyListeners();
}

protected void notifyListeners() {
for(Iterator iterator = listeners.iterator();

iterator.hasNext();) {
PolicyListener listener = iterator.next();
listener.policyUpdated(this);
}

}

Simply call notifyListeners() here…

8Capital District Java Developers NetworkNovember 15, 2007

So, Are You Ready...

...to review an initial Laboratory application?

9Capital District Java Developers NetworkNovember 15, 2007

Cross-Cutting Concerns

Employee

ResearchTechnicianAdministrativeAssistant
PrincipleInvestigator

Logging
??
??

10Capital District Java Developers NetworkNovember 15, 2007

What is Aspect-Oriented Programming?

A programming paradigm
Separates cross-cutting concerns from the core
functionality of the application
Implementations:

Spring AOP
AspectJ
JBoss AOP
AspectWerkz *

11Capital District Java Developers NetworkNovember 15, 2007

What About Object-Oriented Programming?

Object-Oriented Programming is excellent...
...for modeling real-world objects
...for separation of implementation from interface
...for creating interfaces that allow for loose object coupling

However, secondary concerns must still be referenced in
each of the primary concerns

creating cross-cutting concerns

Even Design Patterns can suffer from cross-cutting
concerns!

12Capital District Java Developers NetworkNovember 15, 2007

Core Concepts

Join Points
Pointcuts
Advice
Aspect

13Capital District Java Developers NetworkNovember 15, 2007

Join Points (1)

Identifiable points within the execution of a program
Calling methods
Initializing objects (constructor calls)
Accessing/updating data members

Place into which aspects are woven
Join Point Model

Defines a set of events visible to an aspect during program
execution
Join Points
Pointcuts

14Capital District Java Developers NetworkNovember 15, 2007

Join Points (2)

: Laboratory

main()

: PrintStream inv : PI

println()

println(String)

println()

getResponsibility()

tech : RT admin : AA

getResponsibility()

getResponsibility()

15Capital District Java Developers NetworkNovember 15, 2007

Pointcuts

Filters to match join points that meet a specification
Three (3) types:

Kind
Scope
Context

Prototype:

[visibility-modifier] pointcut name(ParameterList) :
PointcutExpression ;

16Capital District Java Developers NetworkNovember 15, 2007

Pointcuts (2)

Pointcut Expression
Combination of pointcut designators and operators (&&), (||),
and (!) as necessary

17Capital District Java Developers NetworkNovember 15, 2007

Pointcut Designators

Kind designators
Match certain “kinds” of join point events
call(methodSignature)
execution(methodSignature)

Context designators
Match join points based on join point context
target(Type)
args(Type)

Scope designators
Match join points within a certain scope

18Capital District Java Developers NetworkNovember 15, 2007

Advice

Specifies what to do at the join points of interest
Code that is woven into a pointcut
Three (3) types:

Before
After
Around

19Capital District Java Developers NetworkNovember 15, 2007

Before Advice

Executes before a matched join point
Prototype:

before(ParameterList) : pointcutName(ParameterList) {
// body of advice...
}

20Capital District Java Developers NetworkNovember 15, 2007

After Advice (1)

Executes after a matched join point
Three (3) basic forms:

Successful return from a matched join point
Returning from a matched join point upon some exception
condition
Returning from a matched join point either normally or upon an
exception condition

21Capital District Java Developers NetworkNovember 15, 2007

After Advice (2)

Prototypes:

after(ParameterList) returning(returnValue) :
pointcutName(ParameterList) {

// body of advice...

}

after(ParameterList) throwing(ExceptionType):
pointcutName(ParameterList) {

// body of advice...

}

after(parameterList) : pointcutName(ParameterList) {

// body of advice...

}

22Capital District Java Developers NetworkNovember 15, 2007

Around Advice

Executes before and after a matched join point
Can determine:

Continuation of program execution into matched join point
Return type

Prototype:

ReturnType around(ParameterList) :
pointcutName(ParameterList) {

// body of advice

if(// some desired condition)

proceed(ParameterList)

}

23Capital District Java Developers NetworkNovember 15, 2007

Aspect

A unit of modularity, encapsulation, and abstraction
Sound familiar??

Aspect = Pointcut + Advice
Prototype:

[visibility-modifier] aspect {

// pointcut definition(s)...

// advice definitions(s)...

// other methods...

}

24Capital District Java Developers NetworkNovember 15, 2007

So, Are You Ready...

...to review the refactored Laboratory application?

25Capital District Java Developers NetworkNovember 15, 2007

Resources (1)

Spring Framework
http://www.springframework.org/

AspectJ
http://www.eclipse.org/aspectj/

JBoss AOP
http://labs.jboss.com/jbossaop/

AspectWerkz
http://aspectwerkz.codehaus.org/

26Capital District Java Developers NetworkNovember 15, 2007

Resources (2)

Capitol District Java Developers Network
http://www.cdjdn.com/

ACGNJ Java Users Group
http://www.javasig.org/

Princeton Java Users Group
http://www.myflex.org/princetonjug/

NYJavaSIG
http://www.javasig.com/

Philly Spring Users Group
http://phillyspring.org/

27Capital District Java Developers NetworkNovember 15, 2007

Further Reading (1)

Professional Java Development with the Spring
Framework

Rod Johnson, et. al
ISBN 0-76457-483-3

Pro Spring
Rob Harrop and Jan Machacek
ISBN 1-59059-461-4

Spring in Action
Craig Walls and Ryan Breidenbach
ISBN 1-93239-435-4

28Capital District Java Developers NetworkNovember 15, 2007

Further Reading (2)

Eclipse AspectJ
Adrian Colyer, et. al
ISBN 0-321-24587-3

AspectJ in Action
Ramnivas Laddad
ISBN 1-930-110-93-6

