Applying the Decorator Design
Pattern

Trenton Computer Festival Professional Seminars
April 21, 2006

Michael P. Redlich
(908) 730-3416
michael.p.redlich@exxonmobil.com

About Myself

* Degree
— B.S. in Computer Science

— Rutgers University (go Scarlet Knights!)

« ExxonMobil Research & Engineering
— Clinton, New Jersey

— Senior Research Technician (1988-1998, 2004-present)
— Systems Analyst (1998-2002)

* Ai-Logix, Inc.
— Somerset, New Jersey

— Technical Support Engineer (2003-2004)

(=N

TCF Professional Seminars
April 21, 2006

About Myself (continued)

- ACGNJ

— Java Users Group Leader

— Secretary

* Publications
— “Avoid Excessive Subclassing with the Decorator Design

Pattern”
+ Barry Burd and Michael Redlich

+ Java Boutique, January 27, 2006

— “James: The Java Apache Mail Enterprise Server”
+ Barry Burd and Michael Redlich
+ Java Boutique, September 30, 2005

TCF Professional Seminars
April 21, 2006

(=N

Example Source Code

 The example source code was adapted from:

— Head First Design Patterns
+ Eric & Elisabeth Freeman (with Kathy Sierra & Bert Bates)

 Download example source code from:
— http://tcf.redlich.net/

TCF Professional Seminars
April 21, 2006

(=N

Gang of Four (GoF)

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

* Design Patterns — Elements of Reusable Object-
Oriented Software
— ISBN 0-201-63361-2
— 1995

TCF Professional Seminars
April 21, 2006

(=N

Gang of Four (GoF) Next Generation?

Eric Freeman
Elisabeth Freeman
Kathy Sierra

Bert Bates

* Head First Design Patterns
— ISBN 0-596-00712-4
— 2004

TCF Professional Seminars
April 21, 2006

(=N

What are Design Patterns?

« A pattern is a solution to a problem in a context

 The context is the situation in which the pattern
applies

* The problem refers to the desired goal in the context,
but also refers to any constraints that may occur

* The solution is a general design that anyone can apply

"If you find yourself in a context with a problem that has a goal
that is affected by a set of constraints, then you can apply a

design that resolves the goal and constraints and leads to a
solution.”

(=N

TCF Professional Seminars 6
April 21, 2006

What are Design Patterns? (continued)

* Recurring solutions to software design problems that
are repeatedly found in real-world application

development
« All about the design and interaction of objects

 Four essential elements:
— The pattern name
— The problem

— The solution
— The consequences

TCF Professional Seminars
April 21, 2006

2 [Tl

How Design Patterns Solve Design Problems

* Find appropriate objects

— Helps identify less obvious abstractions
* Design for change

— Avoid creating objects directly

— Avoid dependencies on specific operations
— Avoid algorithmic dependencies
— Avoid tight coupling

(=N

TCF Professional Seminars
April 21, 2006

Thinking in Design Patterns

Keep it simple
— Goal should be simplicity

Design patterns are not a magic bullet
— No “plug and play”

 Know when to apply a design pattern
— Ensure that a pattern fits the design

Consider patterns during refactoring
— Goal is to improve structure, not behavior

* Don’t be afraid to remove a design pattern
— Especially if design has become too complex

2 [Tl

TCF Professional Seminars
April 21, 2006

Design Pattern Categories

 Creational

— Abstracts the instantiation process

— Dynamically create objects so that they don’t have to be
instantiated directly

e Structural

— Composes groups of objects into larger structures
* Behavioral

— Defines communication among objects in a given system
— Provides better control of flow in a complex application

(=N

TCF Professional Seminars
April 21, 2006

10

Creational Patterns

- Abstract Factory

— Provides an interface for creating related objects without
specifying their concrete classes

 Builder

— Reuses the construction process of a complex object

* Factory Method

— Lets subclasses decide which class to instantiate from a
defined interface

* Prototype

— Creates new objects by copying a prototype

(=N

TCF Professional Seminars
April 21, 2006

1"

Creational Patterns (continued)

 Singleton

— Ensures a class has only one instance with a global point of

access to it

(=N

TCF Professional Seminars
April 21, 2006

12

Structural Patterns

* Adapter

— Converts the interface of one class to an interface of another

* Bridge

— Decouples an abstraction from its implementation
« Composite

— Composes objects into tree structures to represent
hierarchies

 Decorator

— Attaches responsibilities to an object dynamically

(=N

TCF Professional Seminars

13
April 21, 2006

Structural Patterns (continued)

 Facade

— Provides a unified interface to a set of interfaces

* Flyweight

— Supports large numbers of fine-grained objects by sharing
* Proxy

— Provides a surrogate for another object to control access to it

(=N

TCF Professional Seminars

14
April 21, 2006

Behavioral Patterns

* Chain of Responsibility

— Passes a request along a chain of objects until the
appropriate one handles it

« Command

— Encapsulates a request as an object
* Interpreter

— Defines a representation and an interpreter for a language
grammar

 lterator

— Provides a way to access elements of an object sequentially
without exposing its implementation

(=N

TCF Professional Seminars
April 21, 2006

15

Behavioral Patterns (continued)

 Mediator

— Defines an object that encapsulates how a set of objects
interact

* Memento

— Captures an object’s internal state so that it can be later
restored to that state if necessary

 Observer

— Defines a one-to-many dependency among objects

o State

— Allows an object to alter its behavior when its internal state
changes

(=N

TCF Professional Seminars
April 21, 2006

16

Behavioral Patterns (continued)

« Strategy

— Encapsulates a set of algorithms individually and makes them
interchangeable

 Template Method

— Lets subclasses redefine certain steps of an algortithm
* Visitor

— Defines a new operation without changing the classes on
which it operates

(=N

TCF Professional Seminars

17
April 21, 2006

Coffee Shop Application

* Objective:

— Update an existing coffee shop application design due to
expansion

(=N

TCF Professional Seminars
April 21, 2006

18

Coffee Shop Application

Beverage

description
getDescription
cost

HouseBlend

DarkRoast

cost

cost

(=N

Decaf

Espresso

cost

cost

TCF Professional Seminars

April 21, 2006

19

Coffee Shop Application

HouseBlend

cost
/

HouseBlendWithMocha

cost

~

HouseBlendWithCaramel

cost

Beverage
description
getDescription
cost
DarkRoast Decaf
cost cost
/ /] N\
DarkRoastWithMocha DecafWithMocha
cost cost
DarkRoastWithCaramel DecafWithCaramel
cost cost

/

HouseBlendWithSteamedMilk

DarkRoastWithSteamedMilk

cost

cost

\

Espresso

cost

EspressoWithMocha

cost

~

EspressoWithCaramel

cost

DecafWithSteamedMilk

EspressoWithSteamedMilk

: _|‘|I{|';::u

[—
2%,
=
"

cost

cost

TCF Professional Seminars
April 21, 2006

20

Coffee Shop Application

What about using
additional instance
variables to keep track
of the condiments?

(=N

Beverage

description
milk

Soy

mocha
whip

getDescription
cost

hasMilk
setMilk
hasSoy
setSoy
hasMocha
setMocha
hasWhip
setWhip

TCF Professional Seminars

April 21, 2006

IS THIS A BETTER

DESIGN?

21

Decorator

* Intent

— Attaches additional responsibilities to an object dynamically

— Provides a flexible alternative to subclassing for extending
functionality

 Also known as
— Wrapper
 Motivation

— Allows classes to be easily extended to incorporate new
behavior without modifying existing code

(=N

TCF Professional Seminars
April 21, 2006

22

Decorator (continued)

* Design Principle

— Classes should be open for extension, but closed for
modification

« Use this pattern:

— To add responsibilities to individual objects dynamically and
transparently without affecting other objects

— For responsibilities that can be withdrawn
— When extension by subclassing is impractical

(=N

TCF Professional Seminars
April 21, 2006

23

Decorator (continued)

Component
+Operation()
| | componeant
ConcreteComponent Decorator -
+Oparation|) +Oparation{) - _ 1 component.Operation() Ij
ConcreteDecoratorh ConcreteDecoratorB
-addedState
+Operation() +Operation()
+AddedBehavion)

base Operation():
AddedBeahavior();

_ TCF Professional Seminars
Java April 21, 2006

fi[fax

Constructing a Drink Order With Decorators

DarkRoast inherits
from Beverage and

has a cost() method
/ that calculates the
cost of the drink.

Mocha is a decorator that
mirrors the object it is
decorating, in this case,
Beverage.

fi[fa

TCF Professional Seminars 25
Java April 21, 2006

Revised Coffee Shop Application

HouseBlend
cost
Decaf
cost

|‘|I[l';:~.

2]
=
R

Beverage

description

A

getDescription
cost

component

CondimentDecorator

DarkRoast

cost

/

Espresso

cost

getDescription

Milk Soy Mocha Whip
beverage beverage beverage beverage
getDescription getDescription getDescription getDescription
cost cost cost cost

TCF Professional Seminars
April 21, 2006

26

And Now...

o ...for the code review and demonstration!

ﬁ[f;‘s.

TCF Professional Seminars
April 21, 2006

Jl:|'l.l'|}

27

Resources

* Design Patterns — Elements of Reusable Object-
Oriented Software

— Erich Gamma, et. al
— ISBN 0-201-63361-2

* Head First Design Patterns

— Eric & Elisabeth Freeman (with Kathy Sierra & Bert Bates)
— ISBN 0-596-00712-4

— http://www.wickedlysmart.com/

- Java Design Patterns
— James W. Cooper
— ISBN 0-201-48539-7

— http://www.patterndepot.com/put/8/JavaPatterns.ht
m

:i TCF Professional Seminars 28
April 21, 2006

Jl:|'l.l'|}

Resources (continued)

- UML Distilled

— Martin Fowler (with Kendall Scott)
— ISBN 0-201-32563-2

- Data & Object Factory
— http://www.dofactory.com/

ﬁ[f;‘s.

TCF Professional Seminars
April 21, 2006

Jl:|'l.l'|}

29

