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with Micronaut
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Who’s Mike?

• Bachelor of Science, Computer Science

• “Petrochemical Research Organization”

• Java Queue News Editor, InfoQ

• Leadership Council, Jakarta EE 
Ambassadors

• Amateur Computer Group of New Jersey
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Objectives

• What is Micronaut?

• Why Micronaut?

• Features

• JVM Language Support

• Getting Started

• Live Demos (yea!)
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What is Micronaut?
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What is Micronaut?

• A full-featured, full-stack JVM-based 
lightweight application framework for 
creating microservice-based, cloud-native 
and serverless applications that can be 
written in Java, Groovy and Kotlin

• Created by Graeme Rocher, Principal 
Software Engineer at Object Computing, 
Inc.
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What is Micronaut?

• First introduced at the Greach Conference 
in March 2018

• Designed from the ground up for 
microservices and serverless applications

• Based on Ahead-of-Time (AoT) compilation

• Current version: 1.3.4

• version 2.0.0-M2 available
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Why Micronaut?
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First, Let’s Travel Back 
in Time to 2008…
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2008

• Grails 1.0 released

• Applications were monoliths

• Before the advent of microservices and 
technologies such as:

• Angular

• React

• Docker
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2008

• Attempt to adapt a monolith-focused 
framework into the microservices 
environment

• Spring and Grails were not designed for the 
microservices environment
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Why Micronaut?
“We believe Micronaut is the basis for a 
framework for the future, by resolving this 
tension by eliminating all use of reflection and 
producing all annotation metadata, proxies and 
and framework infrastructure at compilation 
time through a set of annotation processors and 
AST transformations that perform Ahead-of-
Time (AoT) compilation…”

Graeme Rocher, Grails & Micronaut Lead at OCI
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Why Micronaut?

“…What this allows Micronaut to achieve is 
blazing fast startup time, low memory 
consumption and crucially improved 
compatibility with GraalVM native image.”

Graeme Rocher, Grails & Micronaut Lead at OCI
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Features
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Features

• A JVM-based framework

• Natively cloud-native

• Fast startup time and low memory 
consumption

• Reactive and non-blocking

• Fast and easy testing
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Features

• HTTP Server

• HTTP Client

• Microservice Patterns

• service discovery

• distributed tracing

• circuit breaker
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Micronaut Projects
• Micronaut AWS

• Micronaut GCP

• Micronaut Test

• Micronaut RabbitMQ

• Micronaut Data

• Micronaut for Spring

• Micronaut Security

• Micronaut MongoDB

• Micronaut Kafka

• Micronaut Servlet
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HTTP Server

• Fully reactive and non-blocking server built 
on top of Netty

• Supports Project Reactor and RxJava

• Auto configuration for common databases
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HTTP Server
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import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Get;

@Controller("/hello")
public class HelloController {

    @Get("/")
    public String index() {
        return "Hello World!";
        }
    }



HTTP Client

• Declarative, reactive, compile-time client

• Automatic service discovery

• Automatic load balancing
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HTTP Client
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import io.micronaut.http.annotation.Get;
import io.micronaut.http.client.Client;
import io.reactivex.Single;

@Client("/hello")
public interface HelloClient {

    @Get("/")
    Single hello();
    }



JVM Language Support
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JVM Languages

22



JVM Build Tools
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Let’s Get Started…
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Install Micronaut
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$ curl -s "https://get.sdkman.io" | bash

$ sdk install micronaut

$ mn

mn> help



Built-In Profiles

• Project templates consisting of skeleton 
project structures with default 
configurations, dependencies, etc.

• service

• cli

• configuration

• etc.
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Built-In Commands

• General commands to build various parts 
of a Micronaut application

• create-app

• create-controller

• create-client

• create-function

• etc.
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Working with Profiles
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$ mn list-profiles

$ mn profile-info service

$ mn create-app org.redlich.demo --profile cli



Generate an Initial 
Application
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$ mn create-app org.redlich.demo

$ mn create-app org.redlich.demo --lang groovy

$ mn create-app org.redlich.demo --lang kotlin



Generate an Initial 
Application
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$ mn create-app org.redlich.demo

$ mn create-app org.redlich.demo --build maven



Adding Features
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$ mn create-app org.redlich.demo --features security-jwt

$ mn create-app org.redlich.demo --features data-jdbc

$ mn create-app org.redlich.demo --features jdbc-tomcat

$ mn create-app org.redlich.demo --feaures rabbitmq



Live Demo
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Demo Application
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Introduction

• A book inventory application built with 
three microservices

• Based on a tutorial by Sergio del Ama 
Caballero, senior software engineer at OCI

• Uses Consul, a distributed service mesh to 
connect, secure and configure services 
across any runtime platform or cloud
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Microservices

• books microservice (Groovy)

• inventory microservice (Kotlin)

• gateway microservice (Java)
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Creating the 
Application
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$ mn create-app example.micronaut.books --lang groovy

$ mn create-app example.micronaut.inventory --lang kotlin

$ mn create-app example.micronaut.gateway



Live Demo
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Micronaut Resources

•https://micronaut.io 

•https://guides.micronaut.io 

•https://micronaut.io/
documentation.html 

•objectcomputing.com/news/category/
micronaut-blog



Further Reading
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Contact Info

mike@redlich.net 

@mpredli 

redlich.net/portfolio 

github.com/mpredli01



Thanks!
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