
1

Building Microservices
with Micronaut

Michael P. Redlich

Who’s Mike?

• Bachelor of Science, Computer Science

• “Petrochemical Research Organization”

• Java Queue News Editor, InfoQ

• Leadership Council, Jakarta EE
Ambassadors

• Amateur Computer Group of New Jersey

2

Objectives

• What is Micronaut?

• Why Micronaut?

• Features

• JVM Language Support

• Getting Started

• Live Demos (yea!)

3

What is Micronaut?

4

What is Micronaut?

• A full-featured, full-stack JVM-based
lightweight application framework for
creating microservice-based, cloud-native
and serverless applications that can be
written in Java, Groovy and Kotlin

• Created by Graeme Rocher, Principal
Software Engineer at Object Computing,
Inc.

5

What is Micronaut?

• First introduced at the Greach Conference
in March 2018

• Designed from the ground up for
microservices and serverless applications

• Based on Ahead-of-Time (AoT) compilation

• Current version: 1.3.4

• version 2.0.0-M2 available

6

Why Micronaut?

7

First, Let’s Travel Back
in Time to 2008…

8

2008

• Grails 1.0 released

• Applications were monoliths

• Before the advent of microservices and
technologies such as:

• Angular

• React

• Docker

9

2008

• Attempt to adapt a monolith-focused
framework into the microservices
environment

• Spring and Grails were not designed for the
microservices environment

10

Why Micronaut?
“We believe Micronaut is the basis for a
framework for the future, by resolving this
tension by eliminating all use of reflection and
producing all annotation metadata, proxies and
and framework infrastructure at compilation
time through a set of annotation processors and
AST transformations that perform Ahead-of-
Time (AoT) compilation…”

Graeme Rocher, Grails & Micronaut Lead at OCI

11

Why Micronaut?

“…What this allows Micronaut to achieve is
blazing fast startup time, low memory
consumption and crucially improved
compatibility with GraalVM native image.”

Graeme Rocher, Grails & Micronaut Lead at OCI

12

Features

13

Features

• A JVM-based framework

• Natively cloud-native

• Fast startup time and low memory
consumption

• Reactive and non-blocking

• Fast and easy testing

14

Features

• HTTP Server

• HTTP Client

• Microservice Patterns

• service discovery

• distributed tracing

• circuit breaker

15

Micronaut Projects
• Micronaut AWS

• Micronaut GCP

• Micronaut Test

• Micronaut RabbitMQ

• Micronaut Data

• Micronaut for Spring

• Micronaut Security

• Micronaut MongoDB

• Micronaut Kafka

• Micronaut Servlet

16

HTTP Server

• Fully reactive and non-blocking server built
on top of Netty

• Supports Project Reactor and RxJava

• Auto configuration for common databases

17

HTTP Server

18

import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Get;

@Controller("/hello")
public class HelloController {

 @Get("/")
 public String index() {
 return "Hello World!";
 }
 }

HTTP Client

• Declarative, reactive, compile-time client

• Automatic service discovery

• Automatic load balancing

19

HTTP Client

20

import io.micronaut.http.annotation.Get;
import io.micronaut.http.client.Client;
import io.reactivex.Single;

@Client("/hello")
public interface HelloClient {

 @Get("/")
 Single hello();
 }

JVM Language Support

21

JVM Languages

22

JVM Build Tools

23

Let’s Get Started…

24

Install Micronaut

25

$ curl -s "https://get.sdkman.io" | bash

$ sdk install micronaut

$ mn

mn> help

Built-In Profiles

• Project templates consisting of skeleton
project structures with default
configurations, dependencies, etc.

• service

• cli

• configuration

• etc.

26

Built-In Commands

• General commands to build various parts
of a Micronaut application

• create-app

• create-controller

• create-client

• create-function

• etc.

27

Working with Profiles

28

$ mn list-profiles

$ mn profile-info service

$ mn create-app org.redlich.demo --profile cli

Generate an Initial
Application

29

$ mn create-app org.redlich.demo

$ mn create-app org.redlich.demo --lang groovy

$ mn create-app org.redlich.demo --lang kotlin

Generate an Initial
Application

30

$ mn create-app org.redlich.demo

$ mn create-app org.redlich.demo --build maven

Adding Features

31

$ mn create-app org.redlich.demo --features security-jwt

$ mn create-app org.redlich.demo --features data-jdbc

$ mn create-app org.redlich.demo --features jdbc-tomcat

$ mn create-app org.redlich.demo --feaures rabbitmq

Live Demo

32

Demo Application

33

Introduction

• A book inventory application built with
three microservices

• Based on a tutorial by Sergio del Ama
Caballero, senior software engineer at OCI

• Uses Consul, a distributed service mesh to
connect, secure and configure services
across any runtime platform or cloud

34

Microservices

• books microservice (Groovy)

• inventory microservice (Kotlin)

• gateway microservice (Java)

35

36

Creating the
Application

37

$ mn create-app example.micronaut.books --lang groovy

$ mn create-app example.micronaut.inventory --lang kotlin

$ mn create-app example.micronaut.gateway

Live Demo

38

39

Micronaut Resources

•https://micronaut.io

•https://guides.micronaut.io

•https://micronaut.io/
documentation.html

•objectcomputing.com/news/category/
micronaut-blog

Further Reading

40

41

Contact Info

mike@redlich.net

@mpredli

redlich.net/portfolio

github.com/mpredli01

Thanks!

42

