Introduction to OOP
& Design Principles

Michael P. Redlich

® InfoQ Java Queue News Editor

® Co-Director, Garden State Java User Group

® |eadership Council, Jakarta EE Ambassadors

® Committer, Jakarta NoSQL and Jakarta Data

® “Petrochemical Research Organization™

@mpredIi #shareMPknowledge

Objectives

® Object-Oriented Programming
® Object-Oriented Design Principles

® Live Demos (yea!)

@mpredli

P
o

gb

.

)
rcn t
ey
nC’;
ecgl
o

Some OOP Languages

e Ada o OO-Cobol
o C++ ® Python

o Eiffel ® Simula

® Java ® Smalltalk
® Modula-3 ® Theta

® Obijective C

@mpredli

What is OOP?

® A programming paradigm that is focused on
objects and data

® as opposed to actions and logic

® Obijects are identified to model a system

® Obijects are designed to interact with each
other

@mpredli

@mpredli

OQOP Basics (1)

Procedure-Oriented

Top Down/Bottom Up
Structured programming

Centered around an
algorithm

|dentify tasks; how
something is done

Object-Oriented

|dentify objects to be
modeled

Concentrate on what an
object does

Hide how an object
performs its task

|dentify behavior

OOP Basics (2)

® Abstract Data Type (ADT)

® user-defined data type

® use of objects through functions (methods)
without knowing the internal representation

@mpredli

OOP Basics (3)

® |nterface

® functions (methods) provided in the ADT that
allow access to data

® |mplementation

® underlying data structure(s) and business logic
within the ADT

@mpredli

OOP Basics (4) 4

Class Object
® Defines a model ® |[s an instance of a class
® Declares attributes ® Has state
® Declares behavior ® Has behavior
® |s an abstract data type ® May have many unique

objects of the same class

@mpredli

OOP Attributes

® Four (4) Main Attributes:
® data encapsulation
® data abstraction
® inheritance

® polymorphism

@mpredli

Data Encapsulation

® Separates the implementation from the
interface

® A public view of an object, but
implementation is private

® access to data is only allowed through a defined
interface

@mpredli

Data Abstraction g
_’\ o

99—
. _>/
® A model of an entity iy

® Defines a data type by its functionality as
opposed to its implementation

@mpredIi

Inheritance

® A means for defining a new class as an
extension of a previously defined class

® [he derived class inherits all attributes and
behavior of the base class

® “|S-A” relationship

® Baseball is a Sport

@mpredli

Polymorphism

® From the Greek meaning “many forms™

® The ability of closely-related objects to
respond differently to the same function

@mpredli

Advantages of OOP

® |nterface can (and should) remain
unchanged when improving implementation

® Encourages modularity in application
development

® Better maintainability of code

® Code reuse

® Emphasis on what, not how

@mpredli

. -
g A (o Ay
g -

@mpredIi

Classes (1)

® A user-defined abstract data type

® Based on the C struct mechanism

® Contain:
® constructor
® destructor

® data members and member functions (methods)

@mpredli

Classes (2)

® Static/Dynamic object instantiation

® Multiple Constructors:
e Sports (void) ;
e Sports(char *,int,int);

e Sports(float,char *,int);

@mpredli

Classes (3) ,§'

® Class scope (C++)

® scope resolution operator (: :)

® Abstract Classes

® contain at least one pure virtual member
function (C++)

® contain at least one abstract method (Java)

@mpredli
20

Methods

® Pure virtual member function (C++)

e virtual void draw() = O;

® Abstract method (Java)

e public abstract wvoid draw () ;

@mpredli
21

ass Inheritance

Sports

teamName: String
win: int

loss: int

pct: double

\J A\ Y
Baseball Football Basketball

tie: int tie: int

Static Instantiation
(C++)

® Object creation:

e Baseball mets ("Mets",97,65);

® Access to public member functions:

e mets.getWin(); // returns 97

@mpredli
23

Dynamic Instantiation ,5'
(C++)

® Object creation:

e Baseball *mets = new
Baseball ("Mets",97,65) ;

® Access to public member functions:

e mets->getWin(); // returns 97

@mpredli
24

Dynamic Instantiation ,5'
(lava)

® Object creation:

e Baseball mets = new
Baseball ("Mets",97,65) ;

® Access to public member functions:

e mets.getWin(); // returns 97

@mpredli
25

Deleting Objects (C++

Baseball mets ("Mets",97,65);

// object deleted when out of scope

Baseball *mets = new
Baseball ("Mets",97,65) ;

delete mets; // required call

@mpredli
26

Deleting Objects (Java)

Baseball mets = new
Baseball ("Mets",97,65) ;

// automatic garbage collection or:

System.gc(); // explicit call

@mpredli
27

SI
n
n
I

What are OO Design
Principles!?

® A set of underlying principles for creating
flexible designs that are easy to maintain
and adaptable to change

® Understanding the basics of object-
oriented programming isn’t enough

@mpredli
29

Some OO Design
Principles (1)

® Encapsulate What Varies

® Program to Interfaces, Not
Implementations

® Favor Composition Over Inheritance

® Classes Should Be Open for Extension, But
Closed for Modification

@mpredli
30

Some OO Design
Principles (2)

® Strive for Loosely Coupled Designs
Between Objects That Interact

® A Class Should Have Only One Reason to
Change

@mpredli
31

Varies

® |dentify and encapsulate areas of code that
vary

® Encapsulated code can be altered without
affecting code that doesn’t vary

® Forms the basis for almost all of the
original Design Patterns

@mpredli
32

// OrderCars class

public class OrderCars {
public Car orderCar (String model) {

Car car;

if (model.equals ("Charger"))
car = new Dodge (model) ;

else if (model.equals("Corvette"))
car = new Chevrolet (model) ;

else if (model.equals ("Mustang"))
car = new Ford(model) ;

car.buildCar () ;
car.testCar () ;
car.shipCar() ;

}

@mpredli

33

NEW JERSEY.

- -)
AT
- P -

@mpredIi
34

Demo

@mpredIi
35

Program to Interfaces,
Not Implementations

® Eliminates being locked-in to a specific
implementation

® An interface declares generic behavior

® Concrete class(es) implement methods
defined in an interface

@mpredli
36

NEW JERSEY.

// Cat class

public class Cat {
public String meow() {
return "meow";

}

// Cow class

public class Cow {
public String moo () {
return "moo";

}
}

@mpredli
37

NEW JERSEY.

// Animals class - main application

public class Animals {
public static void main (String[] args) {
Cat cat = new Cat() ;
System.out.println("The cat says, " + cat.meow())

Cow cow = new Cow() ;
System.out.println("The cow says, " + cow.moo())

}
}

// output
The cat says, meow
The cow says, moo

@mpredIi
38

// Animal interface

public interface Animal ({
public void speak() ;

}

@mpredIi
39

// Cat class (revised)

NEW JERSEY.

public class Cat implements Animal ({
public void speak () {
meow () ;

}

public String meow () ({
return "meow'";

}

// Cow class (revised)

public class Cow implements Animal {
public void speak () {
moo () ;

}

public String moo () {
return "moo'";

}
}

@mpredIi
40

// Animals class - main application (revised)

public class Animals {

public static void main (String[] args) {

Animal cat = new Cat();

System.out.println ("The cat says,

Animal cow = new Cow() ;

System.out.println ("The cow says,

}
}

// output
meow
moo

@mpredIi

41

" + cat.speak());

" + cow.speak());

Favor Composition €

Over Inheritance
® “HAS-A” can be better than “IS-A”

® Eliminates excessive use of subclassing

® An object’s behavior can be modified
through composition as opposed through
inheritance

® Allows change in object behavior at run-
time

@mpredli
42

Classes Should Be
Open for Extension...

® .. But Closed for Modification

® “Come in,We're Open”
® extend the class to add new behavior

® “Sorry,We're Closed”

® the code must remain closed to modification

@mpredli
43

A Simple Hierarchy...

Beverage

getDescription
cost

HouseBlend

cost cost

@mpredIi
44

... T'hat Quickly

Becomes Complex!

description

getDescription
cost

HouseBlend DarkRoast m Espresso

DarkRoastWithMocha | DecafWithMocha | EspressoWithMocha

HouseBlendWithMocha
cost / cost | cost | | cost
- e A s

HouseBlendWithCaramel DarkRoastWithCaramel DecafWithCaramel I EspressoWithCaramel

cost cost cost Icost

/ / \ ~

HouseBlendWithSteamedMilk DarkRoastWithSteamedMilk DecafWithSteamedMilk | | EspressoWithSteamedMilk |
cost cost cost | | cost |

@mpredli

HouseBlend

cost

Refactored Design *=

getDescription
cost

DarkRoast

beverage

getDescription

cost

46

component

CondimentDecorator

getDescription

Mocha Whip

beverage beverage beverage

getDescription getDescription getDescription
cost cost cost

Strive for Loosely
Coupled Designs...

® .. .Between Objects That Interact

® Allows you to build flexible object-oriented
applications that can handle change

® interdependency is minimized

® Changes to one object won't affect another
object

® Obijects can be used independently

@mpredli
47

Publisher/Subscriber =

Temperature Sensor

pulls data ‘ displays

Humidity Sensor WeatherData Object

Weather Station

Display Device

Pressure Sensor

@mpredIi
48

- -)
AT
- P -

@mpredIi
49

Demos

@mpredIi
50

A Class Should Have...

® ..Only One Reason to Change

® (Classes can inadvertently assume too many
responsibilities

® interdependency is minimized

® cross-cutting concerns

® Assign a responsibility to one class (and
only one class)

@mpredli
51

(1)

® Garden State Java Users Group (GSJUG)
e facilitated by the GSJUG Leadership Team
®¢ gsjug.org

® NYJavaSIG

e facilitated by Frank Greco, et.al

®¢ javasig.com

@mpredli
52

(2)
e Philly]JUG

® facilitated by Paul Burton, et. al.
e meetup.com/PhillyJUG

® Jersey City Java Users Group

e facilitated by Amitai Schleier
® meetup.com/Jersey-City-Java-
User-Group-JC-JUG/

@mpredli
53

(3)

® (Capital District Java Developers Network

e facilitated by Dan Patsey

e cdjdn.com

® currently restructuring

@mpredli
54

Further Reading

A Brain-Friendly Guide

‘Head First
Design Patterns

A Brain-Friendly Guide to OOA&D

Head First
Object-Oriented

Avoid those
embarrassing
coupling mistakes

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

O'REILLY*

Analysis @ Design

your friends knew about
Factory pattern is
p[‘:‘b&b]y " E Y A

Load the patterns
that matter straight
into your brain

See why Jim's

love life improved

when he cut down
‘ his inheritance

Eric Freeman & Elisabeth Freeman
with Kathy Sierra & Bert Bates

Impress friends with
your UML prowess

<3

Bend your mind
around dozens of

00 exercises

Avoid embarrassing

relationship
mistakes

O'REILLY*

Turn your Q0

designs into
serious code

Load important 00
design principles straight
into your brain

d
See how polymorphism,
encapsulation and
inheritance helped Jen
refactor her love life

Brett D. McLaughlin, Gary Pollice & David West

Resources

® java.sun.com

® headfirstlabs.com
® themeteorbook.com
® eventedmind.com

® atmosphere.meteor.com

@mpredli
56

Contact Info

mike(@redlich.net
@mpredli

redlich.net
redlich.net/portfolio
github.com/mpredliOl

@mpredli
57

Thanks!

@mpredIi

58

