
@mpredli
1

Introduction to OOP
& Design Principles

Michael P. Redlich



#shareMPknowledge@mpredli

Who’s Mike?

• InfoQ Java Queue News Editor

• Co-Director, Garden State Java User Group

• Leadership Council, Jakarta EE Ambassadors

• Committer, Jakarta NoSQL and Jakarta Data

• “Petrochemical Research Organization”



@mpredli

Objectives

• Object-Oriented Programming

• Object-Oriented Design Principles

• Live Demos (yea!)

3



@mpredli

Object-Oriented 
Programming (OOP)

4



@mpredli

Some OOP Languages
• Ada

• C++

• Eiffel

• Java

• Modula-3

• Objective C

• OO-Cobol

• Python

• Simula

• Smalltalk

• Theta

5



@mpredli

What is OOP?

• A programming paradigm that is focused on 
objects and data

• as opposed to actions and logic

• Objects are identified to model a system

• Objects are designed to interact with each 
other

6



@mpredli

OOP Basics (1)
• Procedure-Oriented

• Top Down/Bottom Up

• Structured programming

• Centered around an 
algorithm

• Identify tasks; how 
something is done

• Object-Oriented

• Identify objects to be 
modeled

• Concentrate on what an 
object does

• Hide how an object 
performs its task

• Identify behavior

7



@mpredli

OOP Basics (2)

• Abstract Data Type (ADT)

• user-defined data type

• use of objects through functions (methods) 
without knowing the internal representation

8



@mpredli

OOP Basics (3)

• Interface

• functions (methods) provided in the ADT that 
allow access to data

• Implementation

• underlying data structure(s) and business logic 
within the ADT

9



@mpredli

OOP Basics (4)
• Class

• Defines a model

• Declares attributes

• Declares behavior

• Is an abstract data type

• Object

• Is an instance of a class

• Has state

• Has behavior

• May have many unique 
objects of the same class

10



@mpredli

OOP Attributes

• Four (4) Main Attributes:

• data encapsulation

• data abstraction

• inheritance

• polymorphism

11



@mpredli

Data Encapsulation

• Separates the implementation from the 
interface

• A public view of an object, but 
implementation is private

• access to data is only allowed through a defined 
interface

12



@mpredli

Data Abstraction

• A model of an entity

• Defines a data type by its functionality as 
opposed to its implementation

13



@mpredli

Inheritance

• A means for defining a new class as an 
extension of a previously defined class

• The derived class inherits all attributes and 
behavior of the base class

• “IS-A” relationship

• Baseball is a Sport

14



@mpredli

Polymorphism

• From the Greek meaning “many forms”

• The ability of closely-related objects to 
respond differently to the same function

15



@mpredli

Advantages of OOP

• Interface can (and should) remain 
unchanged when improving implementation

• Encourages modularity in application 
development

• Better maintainability of code

• Code reuse

• Emphasis on what, not how

16



@mpredli
17



@mpredli

Classes (1)

• A user-defined abstract data type

• Based on the C struct mechanism

• Contain:

• constructor

• destructor

• data members and member functions (methods)

18



@mpredli

Classes (2)

• Static/Dynamic object instantiation

• Multiple Constructors:

• Sports(void);

• Sports(char *,int,int);

• Sports(float,char *,int);

19



@mpredli

Classes (3)

• Class scope (C++)

• scope resolution operator (::)

• Abstract Classes

• contain at least one pure virtual member 
function (C++)

• contain at least one abstract method (Java)

20



@mpredli

Declaring Abstract 
Methods

• Pure virtual member function (C++)

• virtual void draw() = 0;

• Abstract method (Java)

• public abstract void draw();

21



@mpredli

Class Inheritance

22



@mpredli

Static Instantiation 
(C++)

• Object creation:

• Baseball mets("Mets",97,65);

• Access to public member functions:

• mets.getWin(); // returns 97

23



@mpredli

Dynamic Instantiation 
(C++)

• Object creation:

• Baseball *mets = new 
Baseball("Mets",97,65);

• Access to public member functions:

• mets->getWin(); // returns 97

24



@mpredli

Dynamic Instantiation 
(Java)

• Object creation:

• Baseball mets = new 
Baseball("Mets",97,65);

• Access to public member functions:

• mets.getWin(); // returns 97

25



@mpredli

Deleting Objects (C++)

Baseball mets("Mets",97,65);

// object deleted when out of scope 

Baseball *mets = new 
Baseball("Mets",97,65); 

delete mets; // required call

26



@mpredli

Deleting Objects (Java)

Baseball mets = new 
Baseball("Mets",97,65); 

// automatic garbage collection or: 

System.gc(); // explicit call

27



@mpredli

Object-Oriented 
Design Principles

28



@mpredli

What are OO Design 
Principles?

• A set of underlying principles for creating 
flexible designs that are easy to maintain 
and adaptable to change

• Understanding the basics of object-
oriented programming isn’t enough

29



@mpredli

Some OO Design 
Principles (1)

• Encapsulate What Varies

• Program to Interfaces, Not 
Implementations

• Favor Composition Over Inheritance

• Classes Should Be Open for Extension, But 
Closed for Modification

30



@mpredli

Some OO Design 
Principles (2)

• Strive for Loosely Coupled Designs 
Between Objects That Interact

• A Class Should Have Only One Reason to 
Change

31



@mpredli

Encapsulate What 
Varies

• Identify and encapsulate areas of code that 
vary

• Encapsulated code can be altered without 
affecting code that doesn’t vary

• Forms the basis for almost all of the 
original Design Patterns

32



@mpredli
33

// OrderCars class 

public class OrderCars { 
public Car orderCar(String model) { 
Car car; 
if(model.equals("Charger")) 
car = new Dodge(model); 

else if(model.equals("Corvette")) 
car = new Chevrolet(model); 

else if(model.equals("Mustang")) 
car = new Ford(model); 

car.buildCar(); 
car.testCar(); 
car.shipCar(); 
} 

} 



@mpredli
34



@mpredli

Demo

35



@mpredli

Program to Interfaces, 
Not Implementations

• Eliminates being locked-in to a specific 
implementation

• An interface declares generic behavior

• Concrete class(es) implement methods 
defined in an interface

36



@mpredli
37

// Cat class 

public class Cat { 
public String meow() { 
return "meow"; 
} 

// Cow class 

public class Cow { 
public String moo() { 
return "moo"; 
} 

} 



@mpredli
38

// Animals class - main application 

public class Animals { 
public static void main(String[] args) { 
Cat cat = new Cat(); 
System.out.println("The cat says, " + cat.meow()); 

Cow cow = new Cow(); 
System.out.println("The cow says, " + cow.moo()); 
} 

} 

// output 
The cat says, meow 
The cow says, moo 



@mpredli
39

// Animal interface 

public interface Animal { 
public void speak(); 
} 



@mpredli
40

// Cat class (revised) 

public class Cat implements Animal { 
public void speak() { 
meow(); 
} 

public String meow() { 
return "meow"; 
} 

// Cow class (revised) 

public class Cow implements Animal { 
public void speak() { 
moo(); 
} 

public String moo() { 
return "moo"; 
} 

} 



@mpredli
41

// Animals class - main application (revised) 

public class Animals { 
public static void main(String[] args) { 
Animal cat = new Cat(); 
System.out.println("The cat says, " + cat.speak()); 

Animal cow = new Cow(); 
System.out.println("The cow says, " + cow.speak()); 
} 

} 

// output 
meow 
moo 



@mpredli

Favor Composition 
Over Inheritance

• “HAS-A” can be better than “IS-A”

• Eliminates excessive use of subclassing

• An object’s behavior can be modified 
through composition as opposed through 
inheritance

• Allows change in object behavior at run-
time

42



@mpredli

Classes Should Be 
Open for Extension...

• ...But Closed for Modification

• “Come in, We’re Open”

• extend the class to add new behavior

• “Sorry, We’re Closed”

• the code must remain closed to modification

43



@mpredli

A Simple Hierarchy...

44



@mpredli

...That Quickly 
Becomes Complex!

45



@mpredli

Refactored Design

46



@mpredli

Strive for Loosely 
Coupled Designs...

• ...Between Objects That Interact

• Allows you to build flexible object-oriented 
applications that can handle change

• interdependency is minimized

• Changes to one object won’t affect another 
object

• Objects can be used independently

47



@mpredli

Publisher/Subscriber

48



@mpredli
49



@mpredli

Demos

50



@mpredli

A Class Should Have...

• ...Only One Reason to Change

• Classes can inadvertently assume too many 
responsibilities

• interdependency is minimized

• cross-cutting concerns

• Assign a responsibility to one class (and 
only one class)

51



@mpredli

Local Java User Groups 
(1)

• Garden State Java Users Group (GSJUG)

• facilitated by the GSJUG Leadership Team

• gsjug.org 

• NYJavaSIG

• facilitated by Frank Greco, et.al

• javasig.com

52



@mpredli

Local Java User Groups 
(2)

• PhillyJUG

• facilitated by Paul Burton, et. al.

• meetup.com/PhillyJUG

• Jersey City Java Users Group

• facilitated by Amitai Schleier

• meetup.com/Jersey-City-Java-
User-Group-JC-JUG/

53



@mpredli

Local Java User Groups 
(3)

• Capital District Java Developers Network

• facilitated by Dan Patsey

• cdjdn.com 

• currently restructuring

54



@mpredli

Further Reading

55



@mpredli
56

Resources

•java.sun.com 

•headfirstlabs.com 

•themeteorbook.com 

•eventedmind.com 

•atmosphere.meteor.com



@mpredli
57

Contact Info

mike@redlich.net 

@mpredli 

redlich.net 

redlich.net/portfolio 

github.com/mpredli01



@mpredli

Thanks!

58


