Recognizing And Understanding
AntiPatterns In Java Application
Development

ExxonMobil Research & Engineering Co.
Clinton, New Jersey

Michael P. Redlich
(908) 730-3416
michael.p.redlich@exxonmobil.com



About Myself

Degree
— B.S. In Computer Science
— Rutgers University (Go Scarlet Knights!)
ExxonMobil Research & Engineering
— Senior Research Technician (1988-1998, 2004-Present)
— Systems Analyst (1998-2002)

* Ai-Logix, Inc.
— Technical Support Engineer (2003-2004)
« ACGNJ

— Java Users Group Leader
Publications
— James: The Java Apache Mail Enterprise Server
+ Co-Authored With Barry Burd
+ Java Boutique

NYSIA Java Users Group
December 6, 2005



What are Design Patterns?

» Recurring solutions to software design problems that are repeatedly
found in real-world application development

» Are about the design and interaction of objects

NYSIA Java Users Group
December 6, 2005



Gang of Four (GoF)

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

Design Patterns — Elements of Reusable Object-Oriented Software
— ISBN 0-201-63361-2
— 1995

NYSIA Java Users Group
December 6, 2005



What are AntiPatterns?

» Opposite of a design pattern
» A classified bad design
» Designed for the developer to understand problems with bad solutions
» Serve two important purposes:
— To Help Identify Problems
— To Help Implement Solutions
* Next generation of design patterns research

* A design pattern becomes an antipattern when it causes more problems
than it solves

NYSIA Java Users Group 4
December 6, 2005



Anti Gang of Four (AGoF)?7?77?

* William H. Brown
« Raphael C. Malveau
« Hays W. “Skip” McCormick Il
« Thomas J. Mowbray
« AntiPatterns — Refactoring Software, Architectures, and Projects in
Crisis
— ISBN 0-471-19713-0
— 1998

NYSIA Java Users Group
December 6, 2005



Evolution of AntiPatterns

 The intended range and scope of using design patterns was never fully
expressed

- 1977

— Christopher Alexander documented a pattern language for the
planning of towns and buildings
- 1987

— Ward Cunningham and Kent Beck developed a design pattern
language for SmallTalk

* 1994

— Hillside Group hosted the first industry conference on design
patterns, Pattern Languages of Program Design (PLoP)

* 1995

— The Gang of Four released “Design Patterns — Elements of Reusable
Object-Oriented Software

NYSIA Java Users Group 6
December 6, 2005



Evolution of AntiPatterns (continued)

« The tremendous growth of design patterns also had a “dark side”
* 1996

— Michael Akroyd presented “AntiPatterns: Vaccinations against
Object Misuse” at the 1996 Object World West conference

 The usefulness of antipatterns began almost in parallel with design
patterns

NYSIA Java Users Group
December 6, 2005



How AntiPatterns Happen

A manager or developer:
— Not knowing any better
— Not having sufficient knowledge or experience
— Applying a perfectly good design pattern in the wrong context

NYSIA Java Users Group
December 6, 2005



Using AntiPatterns

 Don’t use them in a destructive manner

 The absence of antipatterns does not guarantee success

 Don’t need to address every antipattern to be successful

* “If it’s not broken, don’t fix it”

« Attempting to correct several antipatterns simultaneously is risky
 The purpose is to develop strategies that fix problems as they arise

* Implement an antipattern solution only if the technical staff has the
required skills

NYSIA Java Users Group
December 6, 2005



AntiPattern Types

» Software Development
« Software Architecture
« Software Project Management

NYSIA Java Users Group
December 6, 2005

10



Software Development AntiPatterns

 The Blob

« Continuous Obsolescence*
 Lava Flow

 Ambiguous Viewpoint*

* Functional Decomposition
* Poltergeists

 Boat Anchor*

 * denotes Mini-AntiPattern

 Golden Hammer

+ Dead End*

« Spaghetti Code

* Input Kludge*

« Walking Through A Minefield*
« Cut-and-Paste Programming
 Mushroom Management*

NYSIA Java Users Group
December 6, 2005

1"



Spaghetti Code

« Background
— Classic and most famous antipattern

— Has existed in some form since the early days of programming
languages

— Structured programming languages are most susceptible
* General Form
— A program that lacks real structure

— The software structure is compromised to the extent that the
structure lacks clarity

— Having a small number of objects with very large implementations
— Software that is very difficult to maintain and extend
— No opportunity for code reuse

NYSIA Java Users Group
December 6, 2005

12



Spaghetti Code (continued)

« Symptoms and Consequences

— Methods are process-oriented

— There are minimal relationships among objects

— The software quickly reaches a point of diminishing returns
* Typical Causes

— Inexperience

— No mentoring

— Ineffective code reviews

— No design

NYSIA Java Users Group
December 6, 2005

13



Spaghetti Code (continued)

» Refactored Solution
— Refactoring, refactoring, refactoring!
— Prevention is the best way to resolve this antipattern
— Refactor spaghetti code to a more maintainable form
+ Use getter/setter methods
+ Resist the cut-and-paste antipattern
+ Reorder method/function arguments for better consistency

+ Remove portions of code that may be (or already are)
inaccessible

+ Rename classes, methods/functions, and data types to conform
to an industry standard

NYSIA Java Users Group 14
December 6, 2005



Cut-and-Paste Programming

« Background

— A very common, yet degenerate form of software reuse

— Has good software instincts, but this technique can be over used
* General Form

— ldentified by the presence of many similar code snippets
interspersed throughout a software project

— Programmers who are learning how to develop software from the
more experienced programmers

— Code duplication

NYSIA Java Users Group
December 6, 2005

15



Cut-and-Paste Programming (continued)

« Symptoms and Consequences
— The same bug(s) reoccur throughout the application
— It becomes difficult to locate and fix all instances of a mistake
— Leads to excessive software maintenance costs
* Typical Causes
— Excessive effort to create quality reusable code
— The intent behind a software module is not preserved with the code
— Reusable components are not sufficiently documented
— Unfamiliarity with new technology or tools

NYSIA Java Users Group 16
December 6, 2005



Cut-and-Paste Programming (continued)

« Refactored Solution
— Modify code to emphasize black-box reuse
— Effective code refactoring requires three stages:
+ Code mining
+ Refactoring
+ Configuration management

NYSIA Java Users Group
December 6, 2005

17



Software Architecture AntiPatterns

« Autogenerated Stovepipe* » Architecture By Implication

» Stovepipe Enterprise « Warm Bodies*

« Jumble* * Design By Committee

» Stovepipe System * Swiss Army Knife*

« Cover Your Assets* * Reinvent The Wheel

* Vendor Lock-In * The Grand Old Duke Of York*

 Wolf Ticket*

 * denotes Mini-AntiPattern

NYSIA Java Users Group 18
December 6, 2005



Vendor Lock-In

« Background
— WYSISLWYG syndrome

— Difficult to avoid due to an organizational dependence of a vendor’s
products

* General Form

— A software project adopts a vendor’s product technology and
becomes completely dependent on it

— Problems may arise due to vendor product upgrades

NYSIA Java Users Group 19
December 6, 2005



Vendor Lock-In (continued)

« Symptoms and Consequences

— Commercial vendor product upgrades dictate the software
maintenance cycle

— Features promised by the vendor are delayed or never delivered

— A vendor’s product upgrade varies significantly from the advertised
open systems standard

» Typical Causes

— The vendor’s product is selected based solely on marketing and
sales information

NYSIA Java Users Group 20
December 6, 2005



Vendor Lock-In (continued)

 Refactored Solution
— Isolation layer

+ Separates application software from vendor product-dependent
interfaces

— The isolation layer solution can be used under the following
conditions:

+ Isolation of application software from lower-level infrastructure
+ Anticipated changes to the infrastructure

+ A more convenient programming interface is useful or
necessary

+ There is a need for consistent infrastructure handling across
many systems

NYSIA Java Users Group 21
December 6, 2005



Reinvent The Wheel

« Background

— Software reuse and design reuse are significantly different
paradigms

— Greenfield System (alias of Reinvent the Wheel)
* General Form
— Custom software is built from the ground up

— Software reuse is limited and interoperability is accommodated after
the fact

— Greenfield System Assumptions
+ Eventually become stovepipes

+ Mismatched to most real-world software development
challenges

NYSIA Java Users Group 22
December 6, 2005



Reinvent The Wheel (continued)

« Symptoms and Consequences
— Closed system architectures
— Replication of commercial software functions
— Inadequate support for change management
* Typical Causes

— No communication and technology transfer between software
projects

— Assumption that the software project will be built from scratch
— Absence of an explicit architecture process

NYSIA Java Users Group
December 6, 2005

23



Reinvent The Wheel (continued)

« Refactored Solution
— Architecture mining
+ Valuable information can be found in precursor designs:
— Legacy systems, commercial products, standards, prototypes,
design patterns
+ It is typical to find about six precursor designs
+ Bottom-up design approach

NYSIA Java Users Group
December 6, 2005

24



Software Project Management AntiPatterns

* Blowhard Jamboree*

* Analysis Paralysis

« Viewgraph Engineering*
* Death by Planning

* Fear of Success*

« Corncob

* Intellectual Violence*

 * denotes Mini-AntiPattern

 Irrational Management

« Smoke and Mirrors*

* Project Mismanagement
* Throw It Over The Wall*
* Fire Drill*

* The Feud*

« E-Mail is Dangerous*

NYSIA Java Users Group
December 6, 2005

25



Analysis Paralysis

« Background
— A misconception that designs never fail, only implementations

— Prolonging the analysis and design phases avoids risking
accountability for results

* General Form

— Occurs when the goal is to achieve perfection and completeness of
the analysis phase

— Characterized by turnover and revision of models
— Usually involves waterfall assumptions

— The analysis documents no longer make sense to the domain
experts

NYSIA Java Users Group 26
December 6, 2005



Analysis Paralysis (continued)

« Symptoms and Consequences

— Multiple project restarts

— Cost of analysis exceeds expectation

— The analysis no longer involves user interaction

— The complexity of the analysis results in intricate implementations
» Typical Causes

— Managers over specify and over supervise assignments

— Management has more confidence in their ability to analyze and
decompose as opposed to design and implement

— Goals in the analysis phase are not well-defined

NYSIA Java Users Group
December 6, 2005

27



Analysis Paralysis (continued)

 Refactored Solution

— Incremental development is key to success of object-oriented
development

+ All phases of the process occur with each iteration
— Analysis, design, coding, test, validation

+ Internal increment

+ External increment

NYSIA Java Users Group
December 6, 2005

28



Project Mismanagement

« Background
— Concerns the monitoring and controlling of software projects

— Occurs after planning and during the analysis, design, construction,
and testing of a project

* General Form
— Key activities are often overlooked or minimized
+ Technical planning
+ Quality control
+ Inadequate architecture definition and test coverage
+ Insufficient code reviews

NYSIA Java Users Group 29
December 6, 2005



Project Mismanagement (continued)

« Symptoms and Consequences

— The design is difficult to implement due to a lack of an architectural
strategy

— Code reviews happen infrequently

— The test design requires extra effort due to an inadequately defined
behavioral guideline

» Typical Causes

— The technical criteria for code inspection, testing, integration, and
interoperability due to an inadequate architecture

NYSIA Java Users Group 30
December 6, 2005



Project Mismanagement (continued)

» Refactored Solution
— Three categories of proper risk management
+ Managerial

— Processes

— Roles
+ Common Project Failure Points

— Cost overruns

— Premature project termination

— Development of the wrong project
— Technical failure

NYSIA Java Users Group
December 6, 2005

31



Project Mismanagement (continued)

» Refactored Solution (continued)
— Three categories of proper risk management (continued)
+ Quality
— Program and project management
— Product identification
— Architecture definition
— Solution design
— Solution implementation
— Solution validation
— Product support

NYSIA Java Users Group
December 6, 2005

32



Resources

* Design Patterns — Elements of Resusable Object-Oriented Software
— Erich Gamma, et. al
— ISBN 0-201-63361-2
« AntiPatterns — Refactoring Software, Architectures, and Projects in
Crisis
— William H. Brown, et. al
— ISBN 0-471-19713-0
* An Introduction to AntiPatterns in Java Applications
— Puneet Sangal

NYSIA Java Users Group
December 6, 2005

33



