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What are Design Patterns?

» Recurring solutions to software design problems that are repeatedly
found in real-world application development

» Are about the design and interaction of objects
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Gang of Four (GoF)

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

Design Patterns — Elements of Reusable Object-Oriented Software
— ISBN 0-201-63361-2
— 1995
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What are AntiPatterns?

» Opposite of a design pattern
» A classified bad design
» Designed for the developer to understand problems with bad solutions
» Serve two important purposes:
— To Help Identify Problems
— To Help Implement Solutions
* Next generation of design patterns research

* A design pattern becomes an antipattern when it causes more problems
than it solves
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Anti Gang of Four (AGoF)?7?77?

* William H. Brown
« Raphael C. Malveau
« Hays W. “Skip” McCormick Il
« Thomas J. Mowbray
« AntiPatterns — Refactoring Software, Architectures, and Projects in
Crisis
— ISBN 0-471-19713-0
— 1998
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Evolution of AntiPatterns

 The intended range and scope of using design patterns was never fully
expressed

- 1977

— Christopher Alexander documented a pattern language for the
planning of towns and buildings
- 1987

— Ward Cunningham and Kent Beck developed a design pattern
language for SmallTalk

* 1994

— Hillside Group hosted the first industry conference on design
patterns, Pattern Languages of Program Design (PLoP)

* 1995

— The Gang of Four released “Design Patterns — Elements of Reusable
Object-Oriented Software
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Evolution of AntiPatterns (continued)

« The tremendous growth of design patterns also had a “dark side”
* 1996

— Michael Akroyd presented “AntiPatterns: Vaccinations against
Object Misuse” at the 1996 Object World West conference

 The usefulness of antipatterns began almost in parallel with design
patterns
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How AntiPatterns Happen

A manager or developer:
— Not knowing any better
— Not having sufficient knowledge or experience
— Applying a perfectly good design pattern in the wrong context
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Using AntiPatterns

 Don’t use them in a destructive manner

 The absence of antipatterns does not guarantee success

 Don’t need to address every antipattern to be successful

* “If it’s not broken, don’t fix it”

« Attempting to correct several antipatterns simultaneously is risky
 The purpose is to develop strategies that fix problems as they arise

* Implement an antipattern solution only if the technical staff has the
required skills
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AntiPattern Types

» Software Development
« Software Architecture
« Software Project Management
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Software Development AntiPatterns

 The Blob

« Continuous Obsolescence*
 Lava Flow

 Ambiguous Viewpoint*

* Functional Decomposition
* Poltergeists

 Boat Anchor*

 * denotes Mini-AntiPattern

 Golden Hammer

+ Dead End*

« Spaghetti Code

* Input Kludge*

« Walking Through A Minefield*
« Cut-and-Paste Programming
 Mushroom Management*
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Spaghetti Code

« Background
— Classic and most famous antipattern

— Has existed in some form since the early days of programming
languages

— Structured programming languages are most susceptible
* General Form
— A program that lacks real structure

— The software structure is compromised to the extent that the
structure lacks clarity

— Having a small number of objects with very large implementations
— Software that is very difficult to maintain and extend
— No opportunity for code reuse
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Spaghetti Code (continued)

« Symptoms and Consequences

— Methods are process-oriented

— There are minimal relationships among objects

— The software quickly reaches a point of diminishing returns
* Typical Causes

— Inexperience

— No mentoring

— Ineffective code reviews

— No design
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Spaghetti Code (continued)

» Refactored Solution
— Refactoring, refactoring, refactoring!
— Prevention is the best way to resolve this antipattern
— Refactor spaghetti code to a more maintainable form
+ Use getter/setter methods
+ Resist the cut-and-paste antipattern
+ Reorder method/function arguments for better consistency

+ Remove portions of code that may be (or already are)
inaccessible

+ Rename classes, methods/functions, and data types to conform
to an industry standard
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Cut-and-Paste Programming

« Background

— A very common, yet degenerate form of software reuse

— Has good software instincts, but this technique can be over used
* General Form

— ldentified by the presence of many similar code snippets
interspersed throughout a software project

— Programmers who are learning how to develop software from the
more experienced programmers

— Code duplication
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Cut-and-Paste Programming (continued)

« Symptoms and Consequences
— The same bug(s) reoccur throughout the application
— It becomes difficult to locate and fix all instances of a mistake
— Leads to excessive software maintenance costs
* Typical Causes
— Excessive effort to create quality reusable code
— The intent behind a software module is not preserved with the code
— Reusable components are not sufficiently documented
— Unfamiliarity with new technology or tools
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Cut-and-Paste Programming (continued)

« Refactored Solution
— Modify code to emphasize black-box reuse
— Effective code refactoring requires three stages:
+ Code mining
+ Refactoring
+ Configuration management
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Software Architecture AntiPatterns

« Autogenerated Stovepipe* » Architecture By Implication

» Stovepipe Enterprise « Warm Bodies*

« Jumble* * Design By Committee

» Stovepipe System * Swiss Army Knife*

« Cover Your Assets* * Reinvent The Wheel

* Vendor Lock-In * The Grand Old Duke Of York*

 Wolf Ticket*

 * denotes Mini-AntiPattern
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Vendor Lock-In

« Background
— WYSISLWYG syndrome

— Difficult to avoid due to an organizational dependence of a vendor’s
products

* General Form

— A software project adopts a vendor’s product technology and
becomes completely dependent on it

— Problems may arise due to vendor product upgrades
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Vendor Lock-In (continued)

« Symptoms and Consequences

— Commercial vendor product upgrades dictate the software
maintenance cycle

— Features promised by the vendor are delayed or never delivered

— A vendor’s product upgrade varies significantly from the advertised
open systems standard

» Typical Causes

— The vendor’s product is selected based solely on marketing and
sales information
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Vendor Lock-In (continued)

 Refactored Solution
— Isolation layer

+ Separates application software from vendor product-dependent
interfaces

— The isolation layer solution can be used under the following
conditions:

+ Isolation of application software from lower-level infrastructure
+ Anticipated changes to the infrastructure

+ A more convenient programming interface is useful or
necessary

+ There is a need for consistent infrastructure handling across
many systems
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Reinvent The Wheel

« Background

— Software reuse and design reuse are significantly different
paradigms

— Greenfield System (alias of Reinvent the Wheel)
* General Form
— Custom software is built from the ground up

— Software reuse is limited and interoperability is accommodated after
the fact

— Greenfield System Assumptions
+ Eventually become stovepipes

+ Mismatched to most real-world software development
challenges
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Reinvent The Wheel (continued)

« Symptoms and Consequences
— Closed system architectures
— Replication of commercial software functions
— Inadequate support for change management
* Typical Causes

— No communication and technology transfer between software
projects

— Assumption that the software project will be built from scratch
— Absence of an explicit architecture process
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Reinvent The Wheel (continued)

« Refactored Solution
— Architecture mining
+ Valuable information can be found in precursor designs:
— Legacy systems, commercial products, standards, prototypes,
design patterns
+ It is typical to find about six precursor designs
+ Bottom-up design approach
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Software Project Management AntiPatterns

* Blowhard Jamboree*

* Analysis Paralysis

« Viewgraph Engineering*
* Death by Planning

* Fear of Success*

« Corncob

* Intellectual Violence*

 * denotes Mini-AntiPattern

 Irrational Management

« Smoke and Mirrors*

* Project Mismanagement
* Throw It Over The Wall*
* Fire Drill*

* The Feud*

« E-Mail is Dangerous*
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Analysis Paralysis

« Background
— A misconception that designs never fail, only implementations

— Prolonging the analysis and design phases avoids risking
accountability for results

* General Form

— Occurs when the goal is to achieve perfection and completeness of
the analysis phase

— Characterized by turnover and revision of models
— Usually involves waterfall assumptions

— The analysis documents no longer make sense to the domain
experts
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Analysis Paralysis (continued)

« Symptoms and Consequences

— Multiple project restarts

— Cost of analysis exceeds expectation

— The analysis no longer involves user interaction

— The complexity of the analysis results in intricate implementations
» Typical Causes

— Managers over specify and over supervise assignments

— Management has more confidence in their ability to analyze and
decompose as opposed to design and implement

— Goals in the analysis phase are not well-defined
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Analysis Paralysis (continued)

 Refactored Solution

— Incremental development is key to success of object-oriented
development

+ All phases of the process occur with each iteration
— Analysis, design, coding, test, validation

+ Internal increment

+ External increment
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Project Mismanagement

« Background
— Concerns the monitoring and controlling of software projects

— Occurs after planning and during the analysis, design, construction,
and testing of a project

* General Form
— Key activities are often overlooked or minimized
+ Technical planning
+ Quality control
+ Inadequate architecture definition and test coverage
+ Insufficient code reviews
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Project Mismanagement (continued)

« Symptoms and Consequences

— The design is difficult to implement due to a lack of an architectural
strategy

— Code reviews happen infrequently

— The test design requires extra effort due to an inadequately defined
behavioral guideline

» Typical Causes

— The technical criteria for code inspection, testing, integration, and
interoperability due to an inadequate architecture

NYSIA Java Users Group 30
December 6, 2005



Project Mismanagement (continued)

» Refactored Solution
— Three categories of proper risk management
+ Managerial

— Processes

— Roles
+ Common Project Failure Points

— Cost overruns

— Premature project termination

— Development of the wrong project
— Technical failure
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Project Mismanagement (continued)

» Refactored Solution (continued)
— Three categories of proper risk management (continued)
+ Quality
— Program and project management
— Product identification
— Architecture definition
— Solution design
— Solution implementation
— Solution validation
— Product support
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Resources

* Design Patterns — Elements of Resusable Object-Oriented Software
— Erich Gamma, et. al
— ISBN 0-201-63361-2
« AntiPatterns — Refactoring Software, Architectures, and Projects in
Crisis
— William H. Brown, et. al
— ISBN 0-471-19713-0
* An Introduction to AntiPatterns in Java Applications
— Puneet Sangal
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