
Recognizing And Understanding
AntiPatterns In Java Application

Development
ExxonMobil Research & Engineering Co.

Clinton, New Jersey

Michael P. Redlich
(908) 730-3416

michael.p.redlich@exxonmobil.com

1NYSIA Java Users Group
December 6, 2005

About Myself

• Degree
– B.S. In Computer Science
– Rutgers University (Go Scarlet Knights!)

• ExxonMobil Research & Engineering
– Senior Research Technician (1988-1998, 2004-Present)
– Systems Analyst (1998-2002)

• Ai-Logix, Inc.
– Technical Support Engineer (2003-2004)

• ACGNJ
– Java Users Group Leader

• Publications
– James: The Java Apache Mail Enterprise Server

+ Co-Authored With Barry Burd
+ Java Boutique

2NYSIA Java Users Group
December 6, 2005

What are Design Patterns?

• Recurring solutions to software design problems that are repeatedly
found in real-world application development

• Are about the design and interaction of objects

3NYSIA Java Users Group
December 6, 2005

Gang of Four (GoF)

• Erich Gamma
• Richard Helm
• Ralph Johnson
• John Vlissides
• Design Patterns – Elements of Reusable Object-Oriented Software

– ISBN 0-201-63361-2
– 1995

4NYSIA Java Users Group
December 6, 2005

What are AntiPatterns?

• Opposite of a design pattern
• A classified bad design
• Designed for the developer to understand problems with bad solutions
• Serve two important purposes:

– To Help Identify Problems
– To Help Implement Solutions

• Next generation of design patterns research
• A design pattern becomes an antipattern when it causes more problems

than it solves

5NYSIA Java Users Group
December 6, 2005

Anti Gang of Four (AGoF)???

• William H. Brown
• Raphael C. Malveau
• Hays W. “Skip” McCormick III
• Thomas J. Mowbray
• AntiPatterns – Refactoring Software, Architectures, and Projects in

Crisis
– ISBN 0-471-19713-0
– 1998

6NYSIA Java Users Group
December 6, 2005

Evolution of AntiPatterns

• The intended range and scope of using design patterns was never fully
expressed

• 1977
– Christopher Alexander documented a pattern language for the

planning of towns and buildings
• 1987

– Ward Cunningham and Kent Beck developed a design pattern
language for SmallTalk

• 1994
– Hillside Group hosted the first industry conference on design

patterns, Pattern Languages of Program Design (PLoP)
• 1995

– The Gang of Four released “Design Patterns – Elements of Reusable
Object-Oriented Software

7NYSIA Java Users Group
December 6, 2005

Evolution of AntiPatterns (continued)

• The tremendous growth of design patterns also had a “dark side”
• 1996

– Michael Akroyd presented “AntiPatterns: Vaccinations against
Object Misuse” at the 1996 Object World West conference

• The usefulness of antipatterns began almost in parallel with design
patterns

8NYSIA Java Users Group
December 6, 2005

How AntiPatterns Happen

• A manager or developer:
– Not knowing any better
– Not having sufficient knowledge or experience
– Applying a perfectly good design pattern in the wrong context

9NYSIA Java Users Group
December 6, 2005

Using AntiPatterns

• Don’t use them in a destructive manner
• The absence of antipatterns does not guarantee success
• Don’t need to address every antipattern to be successful
• “If it’s not broken, don’t fix it”
• Attempting to correct several antipatterns simultaneously is risky
• The purpose is to develop strategies that fix problems as they arise
• Implement an antipattern solution only if the technical staff has the

required skills

10NYSIA Java Users Group
December 6, 2005

AntiPattern Types

• Software Development
• Software Architecture
• Software Project Management

11NYSIA Java Users Group
December 6, 2005

Software Development AntiPatterns

• The Blob
• Continuous Obsolescence*
• Lava Flow
• Ambiguous Viewpoint*
• Functional Decomposition
• Poltergeists
• Boat Anchor*

• * denotes Mini-AntiPattern

• Golden Hammer
• Dead End*
• Spaghetti Code
• Input Kludge*
• Walking Through A Minefield*
• Cut-and-Paste Programming
• Mushroom Management*

12NYSIA Java Users Group
December 6, 2005

Spaghetti Code

• Background
– Classic and most famous antipattern
– Has existed in some form since the early days of programming

languages
– Structured programming languages are most susceptible

• General Form
– A program that lacks real structure
– The software structure is compromised to the extent that the

structure lacks clarity
– Having a small number of objects with very large implementations
– Software that is very difficult to maintain and extend
– No opportunity for code reuse

13NYSIA Java Users Group
December 6, 2005

Spaghetti Code (continued)

• Symptoms and Consequences
– Methods are process-oriented
– There are minimal relationships among objects
– The software quickly reaches a point of diminishing returns

• Typical Causes
– Inexperience
– No mentoring
– Ineffective code reviews
– No design

14NYSIA Java Users Group
December 6, 2005

Spaghetti Code (continued)

• Refactored Solution
– Refactoring, refactoring, refactoring!
– Prevention is the best way to resolve this antipattern
– Refactor spaghetti code to a more maintainable form

+ Use getter/setter methods
+ Resist the cut-and-paste antipattern
+ Reorder method/function arguments for better consistency
+ Remove portions of code that may be (or already are)

inaccessible
+ Rename classes, methods/functions, and data types to conform

to an industry standard

15NYSIA Java Users Group
December 6, 2005

Cut-and-Paste Programming

• Background
– A very common, yet degenerate form of software reuse
– Has good software instincts, but this technique can be over used

• General Form
– Identified by the presence of many similar code snippets

interspersed throughout a software project
– Programmers who are learning how to develop software from the

more experienced programmers
– Code duplication

16NYSIA Java Users Group
December 6, 2005

Cut-and-Paste Programming (continued)

• Symptoms and Consequences
– The same bug(s) reoccur throughout the application
– It becomes difficult to locate and fix all instances of a mistake
– Leads to excessive software maintenance costs

• Typical Causes
– Excessive effort to create quality reusable code
– The intent behind a software module is not preserved with the code
– Reusable components are not sufficiently documented
– Unfamiliarity with new technology or tools

17NYSIA Java Users Group
December 6, 2005

Cut-and-Paste Programming (continued)

• Refactored Solution
– Modify code to emphasize black-box reuse
– Effective code refactoring requires three stages:

+ Code mining
+ Refactoring
+ Configuration management

18NYSIA Java Users Group
December 6, 2005

Software Architecture AntiPatterns

• Autogenerated Stovepipe*
• Stovepipe Enterprise
• Jumble*
• Stovepipe System
• Cover Your Assets*
• Vendor Lock-In
• Wolf Ticket*

• * denotes Mini-AntiPattern

• Architecture By Implication
• Warm Bodies*
• Design By Committee
• Swiss Army Knife*
• Reinvent The Wheel
• The Grand Old Duke Of York*

19NYSIA Java Users Group
December 6, 2005

Vendor Lock-In

• Background
– WYSISLWYG syndrome
– Difficult to avoid due to an organizational dependence of a vendor’s

products
• General Form

– A software project adopts a vendor’s product technology and
becomes completely dependent on it

– Problems may arise due to vendor product upgrades

20NYSIA Java Users Group
December 6, 2005

Vendor Lock-In (continued)

• Symptoms and Consequences
– Commercial vendor product upgrades dictate the software

maintenance cycle
– Features promised by the vendor are delayed or never delivered
– A vendor’s product upgrade varies significantly from the advertised

open systems standard
• Typical Causes

– The vendor’s product is selected based solely on marketing and
sales information

21NYSIA Java Users Group
December 6, 2005

Vendor Lock-In (continued)

• Refactored Solution
– Isolation layer

+ Separates application software from vendor product-dependent
interfaces

– The isolation layer solution can be used under the following
conditions:

+ Isolation of application software from lower-level infrastructure
+ Anticipated changes to the infrastructure
+ A more convenient programming interface is useful or

necessary
+ There is a need for consistent infrastructure handling across

many systems

22NYSIA Java Users Group
December 6, 2005

Reinvent The Wheel

• Background
– Software reuse and design reuse are significantly different

paradigms
– Greenfield System (alias of Reinvent the Wheel)

• General Form
– Custom software is built from the ground up
– Software reuse is limited and interoperability is accommodated after

the fact
– Greenfield System Assumptions

+ Eventually become stovepipes
+ Mismatched to most real-world software development

challenges

23NYSIA Java Users Group
December 6, 2005

Reinvent The Wheel (continued)

• Symptoms and Consequences
– Closed system architectures
– Replication of commercial software functions
– Inadequate support for change management

• Typical Causes
– No communication and technology transfer between software

projects
– Assumption that the software project will be built from scratch
– Absence of an explicit architecture process

24NYSIA Java Users Group
December 6, 2005

Reinvent The Wheel (continued)

• Refactored Solution
– Architecture mining

+ Valuable information can be found in precursor designs:
– Legacy systems, commercial products, standards, prototypes,

design patterns
+ It is typical to find about six precursor designs
+ Bottom-up design approach

25NYSIA Java Users Group
December 6, 2005

Software Project Management AntiPatterns

• Blowhard Jamboree*
• Analysis Paralysis
• Viewgraph Engineering*
• Death by Planning
• Fear of Success*
• Corncob
• Intellectual Violence*

• * denotes Mini-AntiPattern

• Irrational Management
• Smoke and Mirrors*
• Project Mismanagement
• Throw It Over The Wall*
• Fire Drill*
• The Feud*
• E-Mail is Dangerous*

26NYSIA Java Users Group
December 6, 2005

Analysis Paralysis

• Background
– A misconception that designs never fail, only implementations
– Prolonging the analysis and design phases avoids risking

accountability for results
• General Form

– Occurs when the goal is to achieve perfection and completeness of
the analysis phase

– Characterized by turnover and revision of models
– Usually involves waterfall assumptions
– The analysis documents no longer make sense to the domain

experts

27NYSIA Java Users Group
December 6, 2005

Analysis Paralysis (continued)

• Symptoms and Consequences
– Multiple project restarts
– Cost of analysis exceeds expectation
– The analysis no longer involves user interaction
– The complexity of the analysis results in intricate implementations

• Typical Causes
– Managers over specify and over supervise assignments
– Management has more confidence in their ability to analyze and

decompose as opposed to design and implement
– Goals in the analysis phase are not well-defined

28NYSIA Java Users Group
December 6, 2005

Analysis Paralysis (continued)

• Refactored Solution
– Incremental development is key to success of object-oriented

development
+ All phases of the process occur with each iteration

– Analysis, design, coding, test, validation
+ Internal increment
+ External increment

29NYSIA Java Users Group
December 6, 2005

Project Mismanagement

• Background
– Concerns the monitoring and controlling of software projects
– Occurs after planning and during the analysis, design, construction,

and testing of a project
• General Form

– Key activities are often overlooked or minimized
+ Technical planning
+ Quality control
+ Inadequate architecture definition and test coverage
+ Insufficient code reviews

30NYSIA Java Users Group
December 6, 2005

Project Mismanagement (continued)

• Symptoms and Consequences
– The design is difficult to implement due to a lack of an architectural

strategy
– Code reviews happen infrequently
– The test design requires extra effort due to an inadequately defined

behavioral guideline
• Typical Causes

– The technical criteria for code inspection, testing, integration, and
interoperability due to an inadequate architecture

31NYSIA Java Users Group
December 6, 2005

Project Mismanagement (continued)

• Refactored Solution
– Three categories of proper risk management

+ Managerial
– Processes
– Roles

+ Common Project Failure Points
– Cost overruns
– Premature project termination
– Development of the wrong project
– Technical failure

32NYSIA Java Users Group
December 6, 2005

Project Mismanagement (continued)

• Refactored Solution (continued)
– Three categories of proper risk management (continued)

+ Quality
– Program and project management
– Product identification
– Architecture definition
– Solution design
– Solution implementation
– Solution validation
– Product support

33NYSIA Java Users Group
December 6, 2005

Resources

• Design Patterns – Elements of Resusable Object-Oriented Software
– Erich Gamma, et. al
– ISBN 0-201-63361-2

• AntiPatterns – Refactoring Software, Architectures, and Projects in
Crisis

– William H. Brown, et. al
– ISBN 0-471-19713-0

• An Introduction to AntiPatterns in Java Applications
– Puneet Sangal
– http://www.devx.com/Java/Article/29162/1954/

