
Using Design Patterns in Java 
Application Development
ExxonMobil Research & Engineering Co.

Clinton, New Jersey

Michael P. Redlich
(908) 730-3416

michael.p.redlich@exxonmobil.com



1NYSIA Java Users Group
October 25, 2005

About Myself

• Degree
– B.S. in Computer Science
– Rutgers University (go Scarlet Knights!)

• ExxonMobil Research & Engineering
– Senior Research Technician (1988-1998, 2004-present)
– Systems Analyst (1998-2002)

• Ai-Logix, Inc.
– Technical Support Engineer (2003-2004)

• ACGNJ
– Java Users Group Leader

• Publications
– James: The Java Apache Mail Enterprise Server

+ co-authored with Barry Burd
+ Java Boutique



2NYSIA Java Users Group
October 25, 2005

Gang of Four (GoF)

• Erich Gamma
• Richard Helm
• Ralph Johnson
• John Vlissides
• Design Patterns – Elements of Reusable Object-Oriented Software

– Erich Gamma, et. al
– ISBN 0-201-63361-2
– 1995



3NYSIA Java Users Group
October 25, 2005

What are Design Patterns?

• Recurring solutions to software design problems that are repeatedly 
found in real-world application development

• All about the design and interaction of objects
• Four essential elements:

– The pattern name
– The problem
– The solution
– The consequences



4NYSIA Java Users Group
October 25, 2005

How Design Patterns Solve Design Problems

• Find appropriate objects
– Helps identify less obvious abstractions

• Program to an interface, not an implementation
– Clients should only know about abstract classes that define an 

interface
– Reduces implementation dependencies

• Design for change
– Avoid creating objects directly
– Avoid dependencies on specific operations
– Avoid algorithmic dependencies
– Avoid tight coupling



5NYSIA Java Users Group
October 25, 2005

Design Pattern Categories

• Creational
– Abstracts the instantiation process
– Dynamically create objects so that they don’t have to be instantiated 

directly
• Structural

– Composes groups of objects into larger structures
• Behavioral

– Defines communication among objects in a given system
– Provides better control of flow in a complex application



6NYSIA Java Users Group
October 25, 2005

Creational Patterns

• Abstract Factory
– Provides an interface for creating related objects without specifying 

their concrete classes
• Builder

– Reuses the construction process of a complex object
• Factory Method

– Lets subclasses decide which class to instantiate from a defined
interface

• Prototype
– Creates new objects by copying a prototype

• Singleton
– Ensures a class has only one instance with a global point of access 

to it



7NYSIA Java Users Group
October 25, 2005

Structural Patterns

• Adapter
– Converts the interface of one class to an interface of another

• Bridge
– Decouples an abstraction from its implementation

• Composite
– Composes objects into tree structures to represent hierarchies

• Decorator
– Attaches responsibilities to an object dynamically

• Façade
– Provides a unified interface to a set of interfaces



8NYSIA Java Users Group
October 25, 2005

Structural Patters (continued)

• Flyweight
– Supports large numbers of fine-grained objects by sharing

• Proxy
– Provides a surrogate for another object to control access to it



9NYSIA Java Users Group
October 25, 2005

Behavioral Patterns

• Chain of Responsibility
– Passes a request along a chain of objects until the appropriate one 

handles it
• Command

– Encapsulates a request as an object
• Interpreter

– Defines a representation and an interpreter for a language grammar
• Iterator

– Provides a way to access elements of an object sequentially without 
exposing its implementation

• Mediator
– Defines an object that encapsulates how a set of objects interact



10NYSIA Java Users Group
October 25, 2005

Behavioral Patterns (continued)

• Memento
– Captures an object’s internal state so that it can be later restored to 

that state if necessary
• Observer

– Defines a one-to-many dependency among objects
• State

– Allows an object to alter its behavior when its internal state changes
• Strategy

– Encapsulates a set of algorithms individually and makes them 
interchangeable

• Template Method
– Lets subclasses redefine certain steps of an algortithm

• Visitor
– Defines a new operation without changing the classes on which it

operates



11NYSIA Java Users Group
October 25, 2005

Factory Method

• Intent
– Defines an interface for creating an object, but lets subclasses

decide which class to instantiate
– Lets a class defer instantiation to subclasses

• Also known as
– Virtual Constructor

• Motivation
– To solve the problem of one class knowing when to create a class of 

another type, but not knowing what kind of class to create
• Design Principle

– Depend upon abstractions; do not depend upon concrete classes



12NYSIA Java Users Group
October 25, 2005

Factory Method

• Use this pattern when:
– A class can’t anticipate the class of objects is must create
– A class would prefer for its subclasses to specify the objects it 

creates
– There is a need for a class to localize one of several helper classes 

that can be delegated a responsibility



13NYSIA Java Users Group
October 25, 2005

Factory Method



14NYSIA Java Users Group
October 25, 2005

Decorator

• Intent
– Attaches additional responsibilities to an object dynamically
– Provides a flexible alternative to subclassing for extending 

functionality
• Also known as

– Wrapper
• Motivation

– Allows classes to be easily extended to incorporate new behavior
without modifying existing code

• Design Principle
– Classes should be open for extension, but closed for modification



15NYSIA Java Users Group
October 25, 2005

Decorator

• Use this pattern:
– To add responsibilities to individual objects dynamically and 

transparently without affecting other objects
– For responsibilities that can be withdrawn
– When extension by subclassing is impractical



16NYSIA Java Users Group
October 25, 2005

Decorator



17NYSIA Java Users Group
October 25, 2005

Mediator

• Intent
– Defines simplified communication among classes
– Defines an object that encapsulates how a set of objects interact
– Promotes loose coupling by keeping objects from referring to each 

other explicitly, and allow the developer to vary their interaction 
independently

• Motivation
– To avoid the many interconnections among objects that can lead to 

a maintenance headache



18NYSIA Java Users Group
October 25, 2005

Mediator

• Use this pattern when:
– A set of objects communicate in well-defined but complex ways
– Reusing an object is difficult because it refers to and communicates 

with many other objects
– A behavior that is distributed among several classes should be 

customizable without a lot of subclassing



19NYSIA Java Users Group
October 25, 2005

Mediator



20NYSIA Java Users Group
October 25, 2005

Observer

• Intent
– Defines a one-to-many dependency among objects so that when one 

object changes state, all its dependents are notified and updated 
automatically

– A way of notifying change to a number of classes
• Also known as

– Dependents
– Publish-Subscribe

• Motivation
– To avoid making classes tightly coupled that would reduce their 

reusability
• Design Principle

– Strive for loosely coupled designs among objects that interact



21NYSIA Java Users Group
October 25, 2005

Observer

• Use this pattern when:
– A change to one object requires changing others, and the number of 

objects to be changed is unknown
– An object should be able to notify other objects without making 

assumptions about who these objects are
+ Avoids having these objects tightly coupled



22NYSIA Java Users Group
October 25, 2005

Observer



23NYSIA Java Users Group
October 25, 2005

Resources

• Design Patterns – Elements of Reusable Object-Oriented Software
– Erich Gamma, et. al
– ISBN 0-201-63361-2

• Java Design Patterns
– James W. Cooper
– ISBN 0-201-48539-7

• UML Distilled
– Martin Fowler (with Kendall Scott)
– ISBN 0-201-32563-2

• Head First Design Patterns
– Eric & Elisabeth Freeman (with Kathy Sierra & Bert Bates)
– ISBN 0-596-00712-4

• Data & Object Factory
– http://www.dofactory.com/


