
Using Design Patterns in Java 
Application Development

Princeton Java Users Group
September 19, 2007

Michael P. Redlich
(908) 730-3416

michael.p.redlich@exxonmobil.com



1Princeton Java Users GroupSeptember 19, 2007

My Background (1)

Degree
B.S. in Computer Science
Rutgers University (go Scarlet Knights!)

ExxonMobil Research & Engineering
Senior Research Technician (1988-1998, 2004-present)
Systems Analyst (1998-2002)

Ai-Logix, Inc.
Technical Support Engineer (2003-2004)

Amateur Computer Group of New Jersey (ACGNJ)
Java Users Group Leader (2001-present)
President (2007-present)
Secretary (2006)



2Princeton Java Users GroupSeptember 19, 2007

My Background (2)

Publications (co-authored with Barry Burd)
James: The Java Apache Mail Enterprise Server
Avoid Excessive Subclassing with the Decorator Design Pattern
Keeping Your Java Objects Informed with the Observer Design 
Pattern
Manufacturing Java Objects with the Factory Method Design 
Pattern
Resistance is Futile – How to Make Your Java Objects Conform 
with the Adapter Pattern
Get to Know Your Java Object’s State of Mind with the State 
Pattern
Encapsulating Algorithms with the Template Method Design 
Pattern



3Princeton Java Users GroupSeptember 19, 2007

Gang-of-Four (GoF)

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides
Design Patterns – Elements of Reusable Object-Oriented 
Software

ISBN 0-201-63361-2
1995



4Princeton Java Users GroupSeptember 19, 2007

Gang-of-Four (GoF) Next Generation?

Eric Freeman
Elisabeth Freeman
Kathy Sierra
Bert Bates
Head First Design Patterns

ISBN 0-596-00712-4
2004



5Princeton Java Users GroupSeptember 19, 2007

What Are Design Patterns? (1)

Recurring solutions to software design problems that are 
repeatedly found in real-world application development
All about the design and interaction of objects
Four essential elements:

The pattern name
The problem
The solution
The consequences



6Princeton Java Users GroupSeptember 19, 2007

What Are Design Patterns? (2)

A pattern is a solution to a problem in a context
The context is the situation in which the pattern applies
The problem refers to the desired goal in the context, 
but also refers to any constraints that may occur
The solution is a general design that anyone can apply

“If you find yourself in a context with a problem 
that has a goal that is affected by a set of 
constraints, then you can apply a design that 
resolves the goal and constraints and leads to a 
solution.” -- Head First Design Patterns, page 579



7Princeton Java Users GroupSeptember 19, 2007

How Can Design Patterns Solve Design Problems?

Help identify less obvious abstractions
Clients should only know about abstract classes that 
define an interface
Reduce implementation dependencies
Avoid creating objects directly
Avoid dependencies on specific operations
Avoid algorithmic dependencies
Avoid tight coupling

Program to an interface,
not an implementation 

Find appropriate objects

Design for change



8Princeton Java Users GroupSeptember 19, 2007

How Are Frameworks & Libraries Related?

Frameworks and Libraries:
Provide a specific implementation
Most likely use Design Patterns

Design Patterns:
Are at a higher level than frameworks and libraries
Help identify how to structure objects to solve problems



9Princeton Java Users GroupSeptember 19, 2007

Thinking in Design Patterns

Keep it simple
Goal should be simplicity

Design Patterns are not a magic bullet
No “plug and play”

Know when to apply a Design Pattern
Ensure that a pattern fits the design

Consider a Design Pattern when refactoring
Goal is to improve structure, not behavior

Don’t be afraid to remove a Design Pattern
Especially if design has become too complex



10Princeton Java Users GroupSeptember 19, 2007

Design Pattern Categories

Creational
Abstract the instantiation process
Dynamically create objects so that they don’t have to be 
instantiated directly

Structural
Compose groups of objects into larger structures

Behavioral
Define communication among objects in a given system
Provide better control of flow in a complex application



11Princeton Java Users GroupSeptember 19, 2007

Creational Patterns (1)

Abstract Factory
Provides an interface for creating related objects without 
specifying their concrete classes

Builder
Reuses the construction process of a complex object

Factory Method
Lets subclasses decide which class to instantiate from a defined
interface

Prototype
Creates new objects by copying a prototype



12Princeton Java Users GroupSeptember 19, 2007

Creational Patterns (2)

Singleton
Ensures a class has only one instance with a global point of 
access to it



13Princeton Java Users GroupSeptember 19, 2007

Structural Patterns (1)

Adapter
Converts the interface of one class to an interface of another

Bridge
Decouples an abstraction from its implementation

Composite
Composes objects into tree structures to represent hierarchies

Decorator
Attaches responsibilities to an object dynamically

Façade
Provides a unified interface to a set of interfaces



14Princeton Java Users GroupSeptember 19, 2007

Structural Patterns (2)

Flyweight
Supports large numbers of fine-grained objects by sharing

Proxy
Provides a surrogate for another object to control access to it



15Princeton Java Users GroupSeptember 19, 2007

Behavioral Patterns (1)

Chain of Responsibility
Passes a request along a chain of objects until the appropriate 
one handles it

Command
Encapsulates a request as an object

Interpreter
Defines a representation and an interpreter for a language 
grammar

Iterator
Provides a way to access elements of an object sequentially 
without exposing its implementation



16Princeton Java Users GroupSeptember 19, 2007

Behavioral Patterns (2)

Mediator
Defines an object that encapsulates how a set of objects interact

Memento
Captures an object’s internal state so that it can be later 
restored to that state if necessary

Observer
Defines a one-to-many dependency among objects

State
Allows an object to alter its behavior when its internal state 
changes



17Princeton Java Users GroupSeptember 19, 2007

Behavioral Patterns (3)

Strategy
Encapsulates a set of algorithms individually and makes them 
interchangeable

Template Method
Lets subclasses redefine certain steps of an algorithm

Visitor
Defines a new operation without changing the classes on which it
operates



18Princeton Java Users GroupSeptember 19, 2007

Design Principles

Guidelines for addressing the issues of managing change 
in object-oriented applications development
Understanding the basics of object-oriented programming 
isn’t enough

Designs should be flexible, maintainable, and adapt to change

Examples:
Depend upon abstractions, do not depend on concrete classes
Classes should be open for extension, but closed for modification
Strive for loosely coupled designs among objects that interact



19Princeton Java Users GroupSeptember 19, 2007

So, Are You Ready...

...to review some of these Design Patterns?



20Princeton Java Users GroupSeptember 19, 2007

Pizza Store Application

Objectives
Design and develop a Pizza Store application that will create 
pizzas for customers
Consider plans for expansion



21Princeton Java Users GroupSeptember 19, 2007

public class PizzaStore {

public Pizza orderPizza(String type) {

Pizza pizza = null;

if(type.equals(“cheese”))

pizza = new CheesePizza();

else if(type.equals(“pepperoni”))

pizza = new PepperoniPizza();

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}
IS THIS A GOOD APPROACH?

Area expected to change

Area expected to remain unchanged



22Princeton Java Users GroupSeptember 19, 2007

public class SimplePizzaFactory {

public Pizza createPizza(String type) {

Pizza pizza = null;

if(type.equals(“cheese”))

pizza = new CheesePizza();

else if(type.equals(“pepperoni”))

pizza = new PepperoniPizza();

return pizza;

}

}



23Princeton Java Users GroupSeptember 19, 2007

public class PizzaStore {

SimplePizzaFactory factory;

public PizzaStore(SimplePizzaFactory factory) {

this.factory = factory;

}

public Pizza orderPizza(String type) {

Pizza pizza = factory.createPizza(type);

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}

Notice how the createPizza() method 
eliminates the need to use the new
keyword



24Princeton Java Users GroupSeptember 19, 2007

A Simple Factory

PizzaStore
orderPizza

SimplePizzaFactory
createPizza

Pizza
prepare
bake
cut
box

CheesePizza VeggiePizza

PepperoniPizza ClamPizza

factory pizza



25Princeton Java Users GroupSeptember 19, 2007

Expanding the Pizza Store

PizzaStore

ChicagoPizzaFactory

NYPizzaFactory

All pizza store franchises 
should leverage the 
PizzaStore code so that 
pizzas are prepared the 
same way.

This franchise likes 
to make pizza with 
thin crust, tasty 
sauce, and just a 
little cheese.

This franchise likes 
to make pizza with 
thick crust, rich 
sauce and lots of 
cheese.



26Princeton Java Users GroupSeptember 19, 2007

public class PizzaTestDrive {

// instance variables...

NYPizzaFactory nyFactory = new NYPizzaFactory();

PizzaStore nyStore = new PizzaStore(nyFactory);

nyStore.orderPizza(“pepperoni”);

ChicagoPizzaFactory chicagoFactory = new ChicagoPizzaFactory();

PizzaStore chicagoStore = new PizzaStore(chicagoFactory);

chicagoStore.orderPizza(“pepperoni”);

}

Here we get NY style pizza

Here we get Chicago style pizza

IS THIS A BETTER APPROACH?



27Princeton Java Users GroupSeptember 19, 2007

Factory Method (1)

Intent
Defines an interface for creating an object, but lets subclasses
decide which class to instantiate
Lets a class defer instantiation to subclasses

Also known as
Virtual Constructor

Motivation
To solve the problem of one class knowing when to create a class 
of another type, but not knowing what kind of class to create



28Princeton Java Users GroupSeptember 19, 2007

Factory Method (2)

Design Principle
Depend upon abstractions; do not depend upon concrete classes
The Dependency Inversion Principle

Use this pattern when:
A class can’t anticipate the class of objects is must create
A class would prefer for its subclasses to specify the objects it 
creates
There is a need for a class to localize one of several helper 
classes that can be delegated a responsibility



29Princeton Java Users GroupSeptember 19, 2007

Factory Method (3)



30Princeton Java Users GroupSeptember 19, 2007

Pizza Store

PizzaStore
createPizza
orderPizza

NYPizzaStore
createPizza

Pizza
prepare
bake
cut
box

NYStyleCheesePizza ChicagoStyleCheesePizza

NYStylePepperoniPizza ChicagoStylePepperoniPizza

ChicagoPizzaStore
createPizza

Product ClassesCreator Classes



31Princeton Java Users GroupSeptember 19, 2007

And Now...

...for the code review and demonstration of the Factory 
Method Design Pattern!



32Princeton Java Users GroupSeptember 19, 2007

Coffee Shop Application (1)

Objectives
Update an existing coffee shop application due to increase in 
product offering



33Princeton Java Users GroupSeptember 19, 2007

Coffee Shop Application (2)

Beverage
description
getDescription
cost

HouseBlend
cost

DarkRoast
cost

Decaf
cost

Espresso
cost



34Princeton Java Users GroupSeptember 19, 2007

Coffee Shop Application (3)

Beverage
description
getDescription
cost

Decaf
cost

Espresso
cost

DarkRoastWithSteamedMilk
cost

DarkRoastWithMocha
cost

HouseBlendWithSteamedMilk
cost

HouseBlendWithMocha
cost

DecafWithSteamedMilk
cost

DecafWithMocha
cost

EspressoWithSteamedMilk
cost

EspressoWithMocha
cost

EspressoWithCaramel
cost

DecafWithCaramel
cost

DarkRoastWithCaramel
cost

HouseBlendWithCaramel
cost

HouseBlend
cost

DarkRoast
cost



35Princeton Java Users GroupSeptember 19, 2007

Improving the Coffee Shop Application

What about using 
additional instance 
variables to keep track 
of the condiments?

IS THIS A 
BETTER 
DESIGN?

Beverage
description
milk
soy
mocha
whip
getDescription
cost
hasMilk
setMilk
hasSoy
setSoy
hasMocha
setMocha
hasWhip
setWhip



36Princeton Java Users GroupSeptember 19, 2007

Decorator (1)

Intent
Attaches additional responsibilities to an object dynamically
Provides a flexible alternative to subclassing for extending 
functionality

Also known as
Wrapper

Motivation
Allows classes to be easily extended to incorporate new behavior
without modifying existing code

Design Principle
Classes should be open for extension, but closed for modification



37Princeton Java Users GroupSeptember 19, 2007

Decorator (2)

Use this pattern:
To add responsibilities to individual objects dynamically and 
transparently without affecting other objects
For responsibilities that can be withdrawn
When extension by subclassing is impractical



38Princeton Java Users GroupSeptember 19, 2007

Decorator (3)



39Princeton Java Users GroupSeptember 19, 2007

Constructing A Drink Order With Decorators

cost()cost()cost()

DarkRoast inherits 
from Beverage and 
has a cost() method 
that calculates the 
cost of the drink.

Mocha is a decorator that
mirrors the object it is
decorating, in this case,
Beverage.



40Princeton Java Users GroupSeptember 19, 2007

Coffee Shop Application (4)

Beverage
description
getDescription
cost

CondimentDecorator
getDescription

Milk
beverage
getDescription
cost

Mocha
beverage
getDescription
cost

Soy
beverage
getDescription
cost

Whip
beverage
getDescription
cost

HouseBlend
cost

DarkRoast
cost

Decaf
cost

Espresso
cost

component



41Princeton Java Users GroupSeptember 19, 2007

And Now...

...for the code review and demonstration of the 
Decorator Design Pattern!



42Princeton Java Users GroupSeptember 19, 2007

Weather Station Monitoring Application (1)

Objectives
Design and develop a weather station monitoring application that
pulls weather-related data from a weather station and displays it 
onto a device
Temperature, humidity, and barometric pressure will be 
monitored



43Princeton Java Users GroupSeptember 19, 2007

Weather Station Monitoring Application (2)

Weather Station

Temperature Sensor

Pressure Sensor

Humidity Sensor

Display Device

WeatherData Object

pulls data displays



44Princeton Java Users GroupSeptember 19, 2007

WeatherData Object

WeatherData
temperature
humidity
pressure
getTemperature
getHumidity
getPressure
measurementsChanged



45Princeton Java Users GroupSeptember 19, 2007

public class WeatherData {

// instance variables...

public void measurementsChanged() {

float temperature = getTemperature();

float humidity = getHumidity();

float pressure = getPressure();

currentConditions.update(temperature,humidity,pressure);

statisticsDisplay.update(temperature,humidity,pressure);

forecastDisplay.update(temperature,humidity,pressure);

}

// other methods here...

}

IS THIS A GOOD APPROACH?

Area expected to change

Use of a common interface

Coding to concrete implementations



46Princeton Java Users GroupSeptember 19, 2007

Observer (1)

Intent
Defines a one-to-many dependency among objects so that when 
one object changes state, all its dependents are notified and 
updated automatically
A way of notifying change to a number of classes

Also known as
Dependents
Publish-Subscribe

Motivation
To avoid making classes tightly coupled that would reduce their 
reusability



47Princeton Java Users GroupSeptember 19, 2007

Observer (2)

Design Principle
Strive for loosely coupled designs among objects that interact

Use this pattern when:
A change to one object requires changing others, and the 
number of objects to be changed is unknown
An object should be able to notify other objects without making 
assumptions about who these objects are

Avoids having these objects tightly coupled



48Princeton Java Users GroupSeptember 19, 2007

Observer (3)



49Princeton Java Users GroupSeptember 19, 2007

Publisher + Subscriber = Observer

WeatherData
(Subject)

CurrentConditions
(Observer)

StatisticsDisplay
(Observer)

ForecastDisplay
(Observer)

82°, 70%, 29.2”Hg

82°, 70%, 29.2”Hg

82°, 70%, 29.2”Hg

HeatIndexDisplay
(Is this an observer?)



50Princeton Java Users GroupSeptember 19, 2007

Weather Station Monitoring Application (3)

WeatherData
registerObserver
removeObserver
notifyObservers
getTemperature
getHumidity
getPressure
measurementsChanged

Subject
registerObserver
removeObserver
notifyObservers

<<interface>>

Observer
update

CurrentConditions
update
display

StatisticsDisplay
update
display

<<interface>>

ForecastDisplay
update
display

DisplayElement
display

<<interface>>



51Princeton Java Users GroupSeptember 19, 2007

And Now...

...for the code review and demonstration of the Observer 
Design Pattern!



52Princeton Java Users GroupSeptember 19, 2007

Resources (1)

Princeton Java Users Group
Facilitated by Yakov Fain
http://www.myflex.org/princetonjug/

ACGNJ Java Users Group
Facilitated by Mike Redlich
http://www.javasig.org/

Capital District Java Users Group
Facilitated by John Andrew
http://www.cdjdn.com/



53Princeton Java Users GroupSeptember 19, 2007

Resources (2)

NYJavaSIG
Facilitated by Frank Greco
http://www.javasig.com/

NYSIA Java Users Group
Facilitated by Ajanta Phatak
http://www.nysia.org/events/SIGpgs/sigvil.cfm?sid=3
3



54Princeton Java Users GroupSeptember 19, 2007

Further Reading (1)

Design Patterns – Elements of Reusable Object-Oriented 
Software

Erich Gamma, et. al
ISBN 0-201-63361-2

Head First Design Patterns
Eric & Elisabeth Freeman (with Kathy Sierra & Bert Bates)
ISBN 0-596-00712-4

Java Design Patterns
James W. Cooper
ISBN 0-201-48539-7



55Princeton Java Users GroupSeptember 19, 2007

Further Reading (2)

UML Distilled
Martin Fowler (with Kendall Scott)
ISBN 0-201-32563-2

Data & Object Factory
http://www.dofactory.com/


