
Applying the Decorator Design 
Pattern

Trenton Computer Festival Professional Seminars
April 21, 2006

Michael P. Redlich
(908) 730-3416

michael.p.redlich@exxonmobil.com



1TCF Professional Seminars
April 21, 2006

About Myself

• Degree
– B.S. in Computer Science
– Rutgers University (go Scarlet Knights!)

• ExxonMobil Research & Engineering
– Clinton, New Jersey
– Senior Research Technician (1988-1998, 2004-present)
– Systems Analyst (1998-2002)

• Ai-Logix, Inc.
– Somerset, New Jersey
– Technical Support Engineer (2003-2004)



2TCF Professional Seminars
April 21, 2006

About Myself (continued)

• ACGNJ
– Java Users Group Leader
– Secretary

• Publications
– “Avoid Excessive Subclassing with the Decorator Design 

Pattern”
+ Barry Burd and Michael Redlich
+ Java Boutique, January 27, 2006

– “James: The Java Apache Mail Enterprise Server”
+ Barry Burd and Michael Redlich
+ Java Boutique, September 30, 2005



3TCF Professional Seminars
April 21, 2006

Example Source Code

• The example source code was adapted from:
– Head First Design Patterns

+ Eric & Elisabeth Freeman (with Kathy Sierra & Bert Bates)

• Download example source code from:
– http://tcf.redlich.net/



4TCF Professional Seminars
April 21, 2006

Gang of Four (GoF)

• Erich Gamma
• Richard Helm
• Ralph Johnson
• John Vlissides
• Design Patterns – Elements of Reusable Object-

Oriented Software
– ISBN 0-201-63361-2
– 1995



5TCF Professional Seminars
April 21, 2006

Gang of Four (GoF) Next Generation?

• Eric Freeman
• Elisabeth Freeman
• Kathy Sierra
• Bert Bates
• Head First Design Patterns

– ISBN 0-596-00712-4
– 2004



6TCF Professional Seminars
April 21, 2006

What are Design Patterns?

• A pattern is a solution to a problem in a context
• The context is the situation in which the pattern 

applies
• The problem refers to the desired goal in the context, 

but also refers to any constraints that may occur
• The solution is a general design that anyone can apply

“If you find yourself in a context with a problem that has a goal
that is affected by a set of constraints, then you can apply a 
design that resolves the goal and constraints and leads to a 
solution.”



7TCF Professional Seminars
April 21, 2006

What are Design Patterns? (continued)

• Recurring solutions to software design problems that 
are repeatedly found in real-world application 
development

• All about the design and interaction of objects
• Four essential elements:

– The pattern name
– The problem
– The solution
– The consequences



8TCF Professional Seminars
April 21, 2006

How Design Patterns Solve Design Problems

• Find appropriate objects
– Helps identify less obvious abstractions

• Design for change
– Avoid creating objects directly
– Avoid dependencies on specific operations
– Avoid algorithmic dependencies
– Avoid tight coupling



9TCF Professional Seminars
April 21, 2006

Thinking in Design Patterns

• Keep it simple
– Goal should be simplicity

• Design patterns are not a magic bullet
– No “plug and play”

• Know when to apply a design pattern
– Ensure that a pattern fits the design

• Consider patterns during refactoring
– Goal is to improve structure, not behavior

• Don’t be afraid to remove a design pattern
– Especially if design has become too complex



10TCF Professional Seminars
April 21, 2006

Design Pattern Categories

• Creational
– Abstracts the instantiation process
– Dynamically create objects so that they don’t have to be 

instantiated directly
• Structural

– Composes groups of objects into larger structures
• Behavioral

– Defines communication among objects in a given system
– Provides better control of flow in a complex application



11TCF Professional Seminars
April 21, 2006

Creational Patterns

• Abstract Factory
– Provides an interface for creating related objects without 

specifying their concrete classes
• Builder

– Reuses the construction process of a complex object
• Factory Method

– Lets subclasses decide which class to instantiate from a 
defined interface

• Prototype
– Creates new objects by copying a prototype



12TCF Professional Seminars
April 21, 2006

Creational Patterns (continued)

• Singleton
– Ensures a class has only one instance with a global point of 

access to it



13TCF Professional Seminars
April 21, 2006

Structural Patterns

• Adapter
– Converts the interface of one class to an interface of another

• Bridge
– Decouples an abstraction from its implementation

• Composite
– Composes objects into tree structures to represent 

hierarchies
• Decorator

– Attaches responsibilities to an object dynamically



14TCF Professional Seminars
April 21, 2006

Structural Patterns (continued)

• Façade
– Provides a unified interface to a set of interfaces

• Flyweight
– Supports large numbers of fine-grained objects by sharing

• Proxy
– Provides a surrogate for another object to control access to it



15TCF Professional Seminars
April 21, 2006

Behavioral Patterns

• Chain of Responsibility
– Passes a request along a chain of objects until the 

appropriate one handles it
• Command

– Encapsulates a request as an object
• Interpreter

– Defines a representation and an interpreter for a language 
grammar

• Iterator
– Provides a way to access elements of an object sequentially 

without exposing its implementation



16TCF Professional Seminars
April 21, 2006

Behavioral Patterns (continued)

• Mediator
– Defines an object that encapsulates how a set of objects 

interact
• Memento

– Captures an object’s internal state so that it can be later 
restored to that state if necessary

• Observer
– Defines a one-to-many dependency among objects

• State
– Allows an object to alter its behavior when its internal state 

changes



17TCF Professional Seminars
April 21, 2006

Behavioral Patterns (continued)

• Strategy
– Encapsulates a set of algorithms individually and makes them 

interchangeable
• Template Method

– Lets subclasses redefine certain steps of an algortithm
• Visitor

– Defines a new operation without changing the classes on 
which it operates



18TCF Professional Seminars
April 21, 2006

Coffee Shop Application

• Objective:
– Update an existing coffee shop application design due to 

expansion



19TCF Professional Seminars
April 21, 2006

Coffee Shop Application

Beverage
description
getDescription
cost

HouseBlend
cost

DarkRoast
cost

Decaf
cost

Espresso
cost



20TCF Professional Seminars
April 21, 2006

Coffee Shop Application

Beverage
description
getDescription
cost

Decaf
cost

Espresso
cost

DarkRoastWithSteamedMilk
cost

DarkRoastWithMocha
cost

HouseBlendWithSteamedMilk
cost

HouseBlendWithMocha
cost

DecafWithSteamedMilk
cost

DecafWithMocha
cost

EspressoWithSteamedMilk
cost

EspressoWithMocha
cost

EspressoWithCaramel
cost

DecafWithCaramel
cost

DarkRoastWithCaramel
cost

HouseBlendWithCaramel
cost

HouseBlend
cost

DarkRoast
cost



21TCF Professional Seminars
April 21, 2006

Coffee Shop Application

What about using 
additional instance 
variables to keep track 
of the condiments?

IS THIS A BETTER 
DESIGN?

Beverage
description
milk
soy
mocha
whip
getDescription
cost
hasMilk
setMilk
hasSoy
setSoy
hasMocha
setMocha
hasWhip
setWhip



22TCF Professional Seminars
April 21, 2006

Decorator

• Intent
– Attaches additional responsibilities to an object dynamically
– Provides a flexible alternative to subclassing for extending 

functionality
• Also known as

– Wrapper
• Motivation

– Allows classes to be easily extended to incorporate new 
behavior without modifying existing code



23TCF Professional Seminars
April 21, 2006

Decorator (continued)

• Design Principle
– Classes should be open for extension, but closed for 

modification
• Use this pattern:

– To add responsibilities to individual objects dynamically and 
transparently without affecting other objects

– For responsibilities that can be withdrawn
– When extension by subclassing is impractical



24TCF Professional Seminars
April 21, 2006

Decorator (continued)



25TCF Professional Seminars
April 21, 2006

Constructing a Drink Order With Decorators

cost()cost()cost()

DarkRoast inherits 
from Beverage and 
has a cost() method 
that calculates the 
cost of the drink.

Mocha is a decorator that
mirrors the object it is
decorating, in this case,
Beverage.



26TCF Professional Seminars
April 21, 2006

Revised Coffee Shop Application

Beverage
description
getDescription
cost

CondimentDecorator
getDescription

Milk
beverage
getDescription
cost

Mocha
beverage
getDescription
cost

Soy
beverage
getDescription
cost

Whip
beverage
getDescription
cost

HouseBlend
cost

DarkRoast
cost

Decaf
cost

Espresso
cost

component



27TCF Professional Seminars
April 21, 2006

And Now…

• …for the code review and demonstration!



28TCF Professional Seminars
April 21, 2006

Resources

• Design Patterns – Elements of Reusable Object-
Oriented Software

– Erich Gamma, et. al
– ISBN 0-201-63361-2

• Head First Design Patterns
– Eric & Elisabeth Freeman (with Kathy Sierra & Bert Bates)
– ISBN 0-596-00712-4
– http://www.wickedlysmart.com/

• Java Design Patterns
– James W. Cooper
– ISBN 0-201-48539-7
– http://www.patterndepot.com/put/8/JavaPatterns.ht
m



29TCF Professional Seminars
April 21, 2006

Resources (continued)

• UML Distilled
– Martin Fowler (with Kendall Scott)
– ISBN 0-201-32563-2

• Data & Object Factory
– http://www.dofactory.com/


