

1

Controlling Global Access to Your Java Objects with the Singleton Design
Pattern

by Barry A. Burd and Michael P. Redlich

Introduction

This article, the seventh in a series about design patterns, introduces the Singleton design pattern, one of the 23 design
patterns defined in the legendary 1995 book Design Patterns – Elements of Reusable Object-Oriented Software. The
authors of this book, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, are known affectionately as the
Gang of Four (GoF).

Design Patterns

The GoF book defines 23 design patterns. The patterns fall into three categories:

• A creational pattern abstracts the instantiation process.
• A structural pattern groups objects into larger structures.
• A behavioral pattern defines better communication among objects.

The Singleton design pattern fits into the creational category.

The Singleton Pattern

According to the GoF book, the Singleton design pattern “ensures a class has only one instance, and provides a global
point of access to it.” You use the Singleton pattern to satisfy four simultaneous requirements:

• An application must have exactly one instance of a particular class.
• The sole instance must be accessible to clients from a well-known access point.
• The sole instance should be extensible by subclassing.
• Clients must be able to use and extend the instance without modifying their own code.

Motivation

An application uses a system resource such as a print spooler or file manager. The system has only one such resource
so your application should have only one instance of a class representing the resource. You may decide to create a
global variable. With a global variable, you may have only one instance at a time. But by calling the constructor several
times, you can still create several instances, one after another.

The Singleton design pattern ensures that the application has only one global instance of an object. The pattern's code is
quite simple, but behind this simplicity, the pattern has some potential pitfalls. This article describes the pattern, its
pitfalls, and two ways to avoid the pitfalls.

UML Diagram

2

Figure 1 shows a UML diagram for the Singleton design pattern.

Figure 1: A UML diagram for the Singleton design pattern

This is the simplest UML diagram of all the 23 GoF design patterns. The diagram's essential concepts are as follows:

• The default constructor is private so you can’t use the new keyword to instantiate the class.
• The Singleton class has a getInstance() method. This method returns the value of the static variable,

instance, of type Singleton.

Implementing the Singleton Design Pattern

Listings 1 and 2 illustrate a generic implementation of the Singleton design pattern.

// Warning: This code is flawed!

public class Singleton
 {
 private static Singleton instance;

 private Singleton()
 {}

 public static Singleton getInstance()
 {

 if(instance == null)
 {
 System.out.println
 ("Creating a new Singleton instance...");
 instance = new Singleton();
 }

 System.out.println
 ("Returning instance " + instance + "...");
 return instance;
 }
 }

Listing 1: The Singleton class

Notice that the default constructor is private. If you try to create an instance of Singleton using the new
keyword, you get a compile time error.

public class SingletonTest

3

 {
 private static final int MAX = 10;

 public static void main(String[] args)
 {
 for(int i = 0;i < MAX; ++i)
 Singleton.getInstance();
 }
 }

Listing 2: The SingletonTest class – a client application

The client application in Listing 2 calls Singleton.getInstance() ten times. During the first call to
Singleton.getInstance(), Listing 1 returns a newly created Singleton instance. During the remaining nine
calls to Singleton.getInstance(), the variable instance isn’t null so Listing 1 returns the existing
(unique) instance. Simple, eh?

The output of the client code appears in Figure 2.

Creating a new Singleton instance...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...
Returning instance Singleton@19821f...

Figure 2: The output of the singleton test application

Notice that the instance Singleton@19821f is exactly the same for all ten iterations of the for loop. The Singleton
design pattern ensures that an application has only one global instance.

So What's the Potential Pitfall?

For a client application like the one in Listing 2, the Singleton pattern works well. But in a multithreaded application,
the seemingly a simple Singleton pattern can become messy. Imagine a machine zippering together two threads,
with each thread executing its own getInstance() method call. The interleaved sequence of steps are described in
Figure 3.

4

Thread 1 Thread 2

Thread 1 tests the condition
instance == null and learns
that instance is indeed null. So
Thread 1 enters the body of the if
statement in Listing 1.

 Thread 2 tests the condition
instance == null and learns
that instance is still null. So
Thread 2 enters the body of the if
statement in Listing 1.

 Thread 2 calls instance = new
Singleton() and returns the
instance.

Time

The variable instance is no
longer null, but Thread 1 is already
inside the if statement. So Thread 1
calls instance = new
Singleton() and returns a second
instance.

Figure 3: Listings 1 and 2 accidentally create two instances of the Singleton class.

In Figure 3, an application creates two instances of the Singleton class because Thread 1 hesitates in the middle of
its run. Of course, you may ask, "What's keeping Thread 1 from continuing its run." For many scenarios, the answer is
"nothing". Much of the time, Thread 1 doesn't hesitate and the Singleton class lives up to its name. An application
creates only one Singleton instance.

But this non-hesitating behavior isn't guaranteed. You can work with a flawed singleton program, and never catch the
flaw in testing. To help catch the flaw, author David Geary suggests adding code that simulates random activity. (See
the references at the end of this article.) Listing 3 illustrates the idea.

5

// Warning: This code is flawed!

import java.util.Random;

public class Singleton
 {
 private static Singleton instance;

 private static Random random = new Random();
 private static final int MAX_SLEEP_TIME = 5000;

 private Singleton()
 {}

 public static Singleton getInstance()
 {
 if(instance == null)
 {
 simulateRandomActivity();
 System.out.println
 ("Creating a new Singleton instance...");
 instance = new Singleton();
 }

 System.out.println(Thread.currentThread().getName() +
 " returning instance " + instance + "...");
 return instance;
 }

 private static void simulateRandomActivity()
 {
 try
 {
 Thread.sleep(random.nextInt(MAX_SLEEP_TIME));
 }
 catch(InterruptedException exception)
 {
 System.out.println("Sleep interrupted: " +
 Thread.currentThread().getName() + ": " +
 exception.toString());
 }
 }
 }

Listing 3: The Singleton class with random activity

In Listing 3, method simulateRandomActivity()brings Geary's idea to life. As in any singleton class, the
getInstance() method checks to determine if the instance variable is null. But when the instance
variable is null, the getInstance() method calls a special simulateRandomActivity() method. The
simulateRandomActivity() method puts the first thread to sleep for a random number of milliseconds --
enough time for a second thread to rush in and make trouble (the kind of trouble you see in Figure 3).

To bring out the worst in Listing 3, you write a test that fires up a few threads. A test is shown in Listing 4.

public class SingletonTest
 {
 public static void main(String[] args)

6

 {
 Thread[] threads = new Thread[10];

 for (int i = 0; i < threads.length; i++)
 {
 threads[i] = new Thread()
 {
 public void run()
 {
 Singleton.getInstance();
 }
 };
 }

 for (int i = 0; i < threads.length; i++)
 {
 threads[i].start();
 }
 }
 }

Listing 4: A client program to run the code in Listing 3

Figure 4 shows the output from a run of the bad singleton code -- the code in Listings 3 and 4.

Creating a new Singleton instance...
Thread-5 returning instance Singleton@1b67f74...
Creating a new Singleton instance...
Thread-3 returning instance Singleton@69b332...
Creating a new Singleton instance...
Thread-2 returning instance Singleton@173a10f...
Creating a new Singleton instance...
Thread-1 returning instance Singleton@530daa...
Creating a new Singleton instance...
Thread-0 returning instance Singleton@a62fc3...
Creating a new Singleton instance...
Thread-7 returning instance Singleton@89ae9e...
Creating a new Singleton instance...
Thread-4 returning instance Singleton@1270b73...
Creating a new Singleton instance...
Thread-8 returning instance Singleton@60aeb0...
Creating a new Singleton instance...
Thread-9 returning instance Singleton@16caf43...
Creating a new Singleton instance...
Thread-6 returning instance Singleton@8813f2...

Figure 4: The result of coding the Singleton pattern incorrectly

Instead of creating only one instance, Listings 3 and 4 generate ten different instances of the Singleton class. That's
bad. By the very nature of pseudo-randomness, a run of these listings doesn't always generate ten different instances.
But the code indicates a vulnerability. Without some kind of protection against laissez-faire multithreading, the naïve
singleton code is dangerous and incorrect.

Avoiding the Pitfall

The easiest way to dodge a multithreading bullet is to synchronize a method. In fact, when you add one word to the
code in Listing 3, you avoid the pitfall.

7

 public static synchronized Singleton getInstance()

Listing 5 contains the corrected code.

import java.util.Random;

public class Singleton
 {
 private static Singleton instance;

 private static Random random = new Random();
 private static final int MAX_SLEEP_TIME = 5000;

 private Singleton()
 {}

 public static synchronized Singleton getInstance()
 {
 if(instance == null)
 {
 simulateRandomActivity();
 System.out.println
 ("Creating a new Singleton instance...");
 instance = new Singleton();
 }

 System.out.println(Thread.currentThread().getName() +
 " returning instance " + instance + "...");
 return instance;
 }

 private static void simulateRandomActivity()
 {
 try
 {
 Thread.sleep(random.nextInt(MAX_SLEEP_TIME));
 }
 catch(InterruptedException exception)
 {
 System.out.println("Sleep interrupted: " +
 Thread.currentThread().getName() + ": " +
 exception.toString());
 }
 }
 }

Listing 5: A copy of Listing 3 with the synchronized keyword added

By adding the word synchronized, you insist that the Java Virtual Machine execute only one copy of the
getInstance() method at a time. If Thread 1 starts executing the getInstance() method then, even if Thread
1 calls simulateRandomActivity(), Thread 2 must wait. That is, Thread 2 can't begin executing getInstance()
until Thread 1 has returned from its call to getInstance(). The nasty scenario illustrated in Figure 3 can't happen.
The output of a run of Listings 4 and 5 is shown in Figure 5.

Creating a new Singleton instance...

8

Thread-0 returning instance Singleton@69b332...
Thread-9 returning instance Singleton@69b332...
Thread-7 returning instance Singleton@69b332...
Thread-8 returning instance Singleton@69b332...
Thread-5 returning instance Singleton@69b332...
Thread-6 returning instance Singleton@69b332...
Thread-3 returning instance Singleton@69b332...
Thread-1 returning instance Singleton@69b332...
Thread-4 returning instance Singleton@69b332...
Thread-2 returning instance Singleton@69b332...

Figure 5: The output after adding the synchronized keyword to the getInstance() method

In Figure 5, the threads return from calls to getInstance() in no particular order. But each thread returns the same
instance. The Singleton pattern's prime directive (that there be only one instance of the Singleton class) has been
satisfied.

Isn't Synchronization Expensive?

In Listing 5 only one thread at a time can execute getInstance() method's code. But letting one thread hog an
entire method's code is wasteful. Figure 6 shows what may happen after a Singleton instance has already been
created.

9

Thread 101 Thread 102

Thread 101 starts executing the
getInstance() method.

 Thread 102 tries to start executing the
getInstance() method, but
Thread 102 must wait for Thread 101
to return from the method.

Thread 101 tests the condition
instance == null and learns
that instance is not null. So
Thread 101 skips the creation of a new
instance, and proceeds to the method's
last few statements.

At last, Thread 101 returns from the
call to the getInstance() method.

 Thread 102 starts executing the
getInstance() method.

Time

 Thread 102 tests the condition
instance == null and learns
that instance is not null...

And so on.

Figure 6: A possible scenario with method synchronization

In Figure 6, Thread 102 waits needlessly to discover that instance isn't null. This waiting isn't necessary. As a
rule, you should let threads execute whatever statements are safe for them to execute. That is, you should narrow the
amount of synchronized code as much as possible.

But of course you must be careful. If you synchronize too little code, you get the awful effect illustrated in Figure 3. So
how do you find an optimal amount of synchronized code?

Double-Checked Locking

To control the overhead due to synchronization, you can use double-checked locking. The word "double" refers to the
fact that you check twice to determine if the variable instance is null. Here’s how it works:

If instance is null:

• Synchronize
• Check the "instance is null" condition again
• Create the unique instance of instance

The code is shown in Listing 6.

1

import java.util.Random;

public class Singleton
 {
 private static volatile Singleton instance;

 private static Random random = new Random();
 private static final int MAX_SLEEP_TIME = 5000;

 private Singleton()
 {}

 public static Singleton getInstance()
 {
 if(instance == null)
 {
 synchronized(Singleton.class)
 {
 if(instance == null)
 {
 simulateRandomActivity();
 System.out.println
 ("Creating a new Singleton instance...");
 instance = new Singleton();
 }
 }
 }
 System.out.println(Thread.currentThread().getName() +
 " returning instance " + instance + "...");
 return instance;
 }

 private static void simulateRandomActivity()
 {
 try
 {
 Thread.sleep(random.nextInt(MAX_SLEEP_TIME));
 }
 catch(InterruptedException exception)
 {
 System.out.println("Sleep interrupted: " +
 Thread.currentThread().getName() + ": " +
 exception.toString());
 }
 }
 }

Listing 6: The Singleton class with double-checked locking

At first glance, Listing 6 looks strange. "Are you sure that instance == null?" How reliable is that second
check? It reminds you of the familiar dialog box. "Are you sure you want to delete this file?" Your sarcastic reply is "I
wouldn't have pressed Delete if I didn't want to delete the file." Sometimes you click "Yes" and then think "Oops! I
clicked 'Yes' out of habit. I didn't really want to delete the file." So what good is double-checking?

Well, double-checked locking isn't like having a dialog box double-check your file deletion. In fact, double-checked
locking works quite nicely. You can grasp the main idea by examining Figures 7 and 8. Figure 7 illustrates the creation
of the first Singleton instance. Figure 8 shows what can happen after a Singleton instance has been created.

1

Thread 1 Thread 2

Thread 1 tests the condition
instance == null and learns
that instance is indeed null. So
Thread 1 enters the outer if statement
of Listing 6.

 Thread 2 tests the condition
instance == null and learns
that instance is still null. So
Thread 2 enters the outer if statement
of Listing 6.

Thread 1 enters the synchronized
block of code.

 Thread 2 tries to enter the
synchronized block of code. but
Thread 2 must wait for Thread 1 to
finished executing the synchronized
block.

Thread 1 tests the condition
instance == null and learns
that instance is still null. So
Thread 1 creates an instance, and exits
the synchronized block.

 Thread 2 enters the synchronized
block of code.

Time

 Thread 2 tests the inner if statement's
instance == null condition.
Thread 2 learns that instance is not
null...

And so on.

Figure 7: A possible scenario with double-checked locking

Figure 7 shows that double-checked locking gives you only one instance of the Singleton class.

1

Thread 101 Thread 102

Thread 101 starts executing the
getInstance() method.

 Thread 102 starts executing the
getInstance() method.

Thread 101 tests the condition
instance == null and learns
that instance is not null. So
Thread 101 skips the creation of a new
instance, and proceeds to the method's
last few statements.

 Thread 102 tests the condition
instance == null and learns
that instance is not null. So
Thread 102 skips the creation of a new
instance, and proceeds to the method's
last few statements.

Thread 101 returns from the call to the
getInstance() method.

Time

 Thread 102 returns from the call to the
getInstance() method.

Figure 8: A scenario later in the double-checked locking run

Figure 8 shows that double-checked locking works more efficiently than the method synchronization in Figure 6.

Over the past few years, many people have written articles criticizing the effectiveness of double-checked locking. The
criticism helped motivate JSR-133 which was implemented in Java 5. A change in the memory model that included
safer use of variables being declared volatile made it possible to use double-checked locking more effectively.

The keyword volatile warns the Java Virtual Machine that a particular variable may be used simultaneously by
more than one thread. Java 5 strengthens the way in which a volatile variable acquires and releases locks. The local
copy of the variable within a given thread is ensured to be correct because the JVM reads the master copy of the
variable (not a cached copy) from memory each time the variable's value is used. A volatile variable does not
participate in certain potentially risky compiler optimizations.

Uses of the Singleton in the Java API

The Singleton design pattern is used quite extensively in the Java API. Just look for any method named
getInstance() in the JDK documentation.

Resources

1

Design Patterns – Elements of Reusable Object-Oriented Software
http://www.awprofessional.com/bookstore/product.asp?isbn=0201633612&rl=1
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
ISBN 0-201-63361-2

Head First Design Patterns
http://www.oreilly.com/catalog/hfdesignpat/
Eric & Elisabeth Freeman
ISBN 0-596-00712-4

Object-Oriented Software Construction
http://vig.prenhall.com/catalog/academic/product/0,1144,0136291554.html,00.html
Bertrand Meyer
ISBN 0-13-629155-4

Data & Object Factory
http://www.dofactory.com/Patterns/Patterns.aspx

Simply Singleton: Navigate the Deceptively Simple Singleton Pattern
David Geary
JavaWorld, April 25, 2003
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html

Double-Checked Locking in Java
Michael Gilfix
Michael Gilfix Online, March 16, 2007
http://www.michaelgilfix.com/techblog/2007/03/16/double-checked-locking

About the Authors

Barry Burd is a professor in the Department of Mathematics and Computer Science at Drew University in Madison,
New Jersey. When he's not lecturing at Drew University, Dr. Burd leads training courses for professional programmers
in business and industry. He has lectured at conferences in America, Europe, Australia and Asia. He is the author of
several articles and books, including Java For Dummies and Ruby on Rails For Dummies, both published by Wiley.

Michael P. Redlich is a Senior Research Technician (formerly a Systems Analyst) at ExxonMobil Research &
Engineering, Co. in Clinton, New Jersey with extensive experience in developing custom web and scientific laboratory
applications. Mike also has experience as a Technical Support Engineer for Ai-Logix, Inc. where he developed
computer telephony applications. As a member of the Amateur Computer Group of New Jersey (ACGNJ), he dedicates
much of his free time facilitating the monthly ACGNJ Java Users Group and serving on the ACGNJ Board of
Directors. Mike is the current ACGNJ President and has previously served as Secretary. He has a Bachelor of Science
in Computer Science from Rutgers University. Mike's computing experience includes computer security, relational
database design and development, object-oriented design and analysis, C/C++, Java, Visual Basic, FORTRAN, Pascal,
MATLAB, HTML, XML, ASP, VBScript, and JavaScript in both the PC and UNIX environments.

The authors thank Jeanne Boyarsky and Mike Krier for their technical assistance in writing this article.

